Book: Dummit & Foote: Abstract Algebra

Syllabus:
- Abelian groups
- Part II: ring theory
 (main focus: commutative rings, divisibility theory) + a little from Chapter 15
Part III: modules

Chapter 10

Skip Chapter 11.1 - 4 (vector spaces, assuming we have seen that)

modules over PID's

- Jordan canonical form
- Classification of finitely generated abelian groups etc.

- Multilinear algebra
- Exterior algebra
- bilinear, symmetric bilinear, quadratic, hermitian forms

- some concept of categorical language

Grading: Tests 100 pt. Oct 5 in class

100 pt. Nov 9

100 pt. Dec 12

No Final

graded point possible

100 pt. HW - assigned in class on Wed. except
Quizzes: generally Wednesdays 100 pts.
Office hours MWF 2-3 & by appointment EH 3846.

Abelian groups

A monoid is a set M together
with a binary operation \(* : \mathbb{R} \times \mathbb{R} \to \mathbb{R}\) which is associative, and there is a unit element \(e \in \mathbb{R}\):

\[
(a \cdot b) \cdot c = a \cdot (b \cdot c)
\]

\[
a \cdot e = e \cdot a = a.
\]

If we omit the unit axiom, we get the definition of a semigroup.

Examples: \((C^\times, \cdot) = \{ z \in C \mid 0 < \|z\| < 1 \}\) is a semigroup.
$(\mathbb{N}, +) = (\mathbb{Z}, 1, 2, 3, \ldots, +)$ is a semigroup.

$(\mathbb{N}, 0, +) = (\mathbb{Z}, 0, 1, 2, 3, \ldots, +)$ is a monoid.

Set $(\{f : S \to S\}, *)$ is a monoid

All maps

$(\mathbb{N}, \cdot) = (\{1, 2, 3, \ldots\}, \cdot)$ is a monoid.

A group is a monoid $(G, *)$ together

with a unary operation $(?)^{-1} : G \to G$ and

that $a \ast a^{-1} = a^{-1} \ast a = e$.
An operation \(* \) is commutative when

\[a * b = b * a \]

Hence, we get the notion of commutative semigroup, commutative monoid,

\[\text{commutative group} = \text{abelian group} \]

The operation \(* \) is sometimes denoted by \(\cdot \), the usual, the neutral element is usually denoted by \(1 \). This is the multiplicative notation.
The operation \ast, especially when commutative, is often denoted by \oplus. Then the neutral element is usually denoted by 0, the inverse to a is usually denoted by $-a$. This is the additive notation.

Let A be a group, $a \in A$. In the multiplicative notation, we write

$$a^k = \underbrace{a \cdot \ldots \cdot a}_{k \text{ times}} \quad k \in \mathbb{N}$$
\[a^0 = 1 \]

\[a^{-k} = (a \cdot \ldots \cdot a)^{-1} = \underbrace{(a^{-1} \cdot \ldots \cdot a^{-1})}_{k \text{ times}} \]

In the additive notation for an abelian group, we write \(ka \) instead of \(a^k \):

\[ka = a + \ldots + a \quad \text{\(k \in \mathbb{N} \)} \]

\[0 \cdot a = 0 \]

\[(-k) \cdot a = (-a) + \ldots + (-a) = -(a + \ldots + a) \]
A subgroup of a group \((G, \ast)\) is a subset \(H \subseteq G\) which is a group under the restriction of the operation \(\ast\):
\[
\forall a, b \in H \implies a \ast b \in H
\]
The neutral element \(e \in H\).
If \(a \in H\) \implies a^{-1} \in H.

Example: \((\mathbb{Z}, +)\) = all integers is an abelian group.
Proposition: If \(H_i, i \in I \) are subgroups of \(G \), then \(\bigcap_{i \in I} H_i \) is a subgroup of \(G \). □

If \(S \subseteq G \) is a subset, we can

\[
k \mathbb{Z} \subseteq \mathbb{Z} \quad \forall k \in \mathbb{Z}
\]

\[
d \mathbb{Z} \subseteq \mathbb{Z} \quad \forall m \in \mathbb{Z}
\]

is a subgroup.

Notation: \(\leq \)
peak of the smallest subgroup of \(G \) containing \(S \):

\[
\bigcap \{ H \leq G \mid H \supseteq S \}.
\]

This is called the subgroup generated by \(S \).

HW

1) Suppose \((M, \cdot)\) is a semigroup and there exist elements \(e_1 \) and \(e_2 \) such that

for all \(x \in M \),

\[
e \cdot x = x \quad x \cdot e = x.
\]

Prove that \((M, \cdot)\) is a monoid.
(2) Prove from the axioms that in a group G,
\[(a^{-1}) \ast (b^{-1}) = (b \ast a)^{-1}.\]

(3) Prove that for a group G and a subset $S \subseteq G$, the subgroup generated by S is the following:
\[\{x_1 \ast \ldots \ast x_n \mid x_i \in S \, \text{or} \, x_i^{-1} \in S\}\]

(we allow $n = 0$ in which case $x_1 \ast \ldots \ast x_n = e$).