17.9a. Please do Problem 17 of §17.9 in Stewart’s Multivariable Calculus.

17.9b. Let \(\mathbf{r}(x, y, z) = (x, y, z) \). Compute the outward flux of \(\mathbf{F} = \mathbf{r}/|\mathbf{r}|^3 \) through the ellipsoid \(4x^2 + 9y^2 + 6z^2 = 36 \). (Hint: Because \(\mathbf{F} \) is not continuous at zero, you cannot use the divergence theorem on the bounded region inside of \(S \). However, you may wish to consider the region bounded between \(S \) and the sphere of radius 100.)

17.9c. Suppose that \(E \) is the unit cube in the first octant and \(\mathbf{F}(x, y, z) = (-x, y, z) \). Let \(S \) be the surface obtained by taking the surface of \(E \) without it’s top (so \(S \) has five sides). Calculate \(\iint_S \mathbf{F} \cdot d\mathbf{S} \) directly and by using the divergence theorem.

17.9d. Use the divergence theorem to evaluate

\[
\iint_S (3x + 4y^2 + 2z) \, dS
\]

where \(S \) is the sphere of radius 2 centered at the origin.