TRUE OR FALSE

1. The Segre variety $\Sigma_{1,3}$ in \mathbb{P}^7 has codimension three.

2. If $Gr(3, k^5) \rightarrow \mathbb{P}^2$ is a surjective regular map, then the fibers have dimension at least 4.

3. If $f : X \rightarrow Y$ be a surjective regular map of projective varieties, then the locus of points y of Y where the dimension of the components of $f^{-1}(y)$ is $(\dim X - \dim Y)$ is closed.

4. The locus of pairs (X, p) in $\mathbb{P}(Sym^2(k^3)^*) \times \mathbb{P}^2$ consisting of a conic X together with a point p on X forms a projective variety of dimension six.

5. The variety of 4×5 matrices of rank less than 3 has dimension 15.

6. The dimension of a variety V is the same as the dimension of any non-empty open subset of V.

7. The set of invertible linear transformations of \mathbb{C}^d can be given the structure of a variety of dimension d.

8. The diagonal in $\mathbb{P}^n \times \mathbb{P}^n$ has dimension n.

9. Every cubic surface in \mathbb{P}^3, even the degenerate ones, contains a line.

10. If a surjective map $X \rightarrow Y$ induces an integral extension of function fields $k(Y) \hookrightarrow k(X)$, then f is finite.