Let R be a Euclidean domain.

1. For non-zero elements f_0, f_1 with $\sigma(f_0) \geq \sigma(f_1)$, write
 \[f_0 = f_1 q_1 + f_2, \]
 where $\sigma(f_2) < \sigma(f_1)$. Show that
 \[(f_0, f_1) = (f_1, f_2) \]
 as ideals in R.

2. Use this to find the greatest common divisor of 2210 and 78 (in \mathbb{Z}).

3. Describe an algorithm to find the gcd of any two elements in a Euclidean domain. (This technique is due to Euclid, though of course, he was only interested in the integers.)