1. Let X be a variety smooth in codimension one. Let $Y \subset X$ be a prime divisor.
 a). Show that there is an open affine set $U \subset X$ such that $\mathcal{I}_Y(U) = (\pi)$ for some regular function $\pi \in \mathcal{O}_X(U)$, some U which meets Y.
 b). Show that if $U' \subset U$, then $\pi_{|U'}$ generates $\mathcal{I}_Y(U')$.
 c). For U affine as in (a), and ϕ regular on U, define $\nu^U_Y(\phi)$ as the largest integer r such that $\phi \in (\pi^r)$. Show that this is independent of the choice of U. Call this $\nu_Y(\phi)$.
 d). Prove that the local ring $\mathcal{O}_{X,Y}$ of X along the subvariety Y is a discrete valuation ring.¹
 e). Show that ν_Y agrees with the valuation determined by the $\mathcal{O}_{X,Y}$.

2. Non-principal divisors on affine smooth varieties. Let $X = \mathbb{V}(y^2 - x^3 + x) \subset \mathbb{A}^2$, where the characteristic is not 2 or 3.
 a). Show that X is smooth (hence all prime divisors are locally principal).
 b). Show that the origin P is a prime divisor on X which is not principal.²
 c). Find an explicit local defining equation for P in a neighborhood of P.

3. Maps of Picard groups for curves. Let $X = \mathbb{V}(z^d - f(x, y)) \subset \mathbb{P}^2$ be a smooth curve, where $f(x, y)$ is a homogeneous polynomial of degree d. Consider projection $\pi : X \to \mathbb{P}^1$ sending $[x : y : z] \mapsto [x : y]$.
 a). Let P be a point of \mathbb{P}^1. Compute π^*P explicitly. Draw a sketch of this divisor on X, thinking of X as a d-sheeted cover of \mathbb{P}^1.
 b). Prove that the pull back map $\text{Pic}(\mathbb{P}^1) \to \text{Pic}(X)$ sends $[D]$ to a divisor class of degree $(\deg \pi)(\deg D)$.
 c). More generally, for any degree d map of smooth projective curves $X \to Y$, prove that the induced map on Picard groups multiplies degrees by d.

4. Normal Varieties. Reread Shafarevich on Normal varieties. Recall the 614 Theorem: If R is a Noetherian domain, then R is normal if and only if the natural inclusion $R \subset \bigcap_{P \text{ht} R} R_P$ (in the fraction field) is an equality.
 a). Be sure you understand why every smooth variety is normal (hint: use that the local rings of a smooth varieties are UFDs).
 b). Prove that if X is a normal (for example, smooth) variety, then a rational function $\phi \in k(X)$ is regular if and only if it has no poles, that is, if $\text{div} \phi$ is effective.
 c). Let $X = \mathbb{V}(P) \subset \mathbb{A}^4$ where P is the kernel of the “obvious” surjective algebra map $k[x, y, z, w] \to k[s^4, s^3 t, st^3, t^4]$. Prove that X is smooth in codimension one.³ Is the rational function $\frac{y^2}{x}$ regular? Compute $\text{div} \frac{y^2}{x}$. Show that X is not normal by showing $\frac{y^2}{x}$ is in the normalization. Does the statement in b hold for non-normal varieties?

¹Use whatever definition you are familiar with; one definition is a local Noetherian domain whose maximal ideal is principal, but make sure this definition agrees with whatever one you know.
²Actually, I believe no prime divisor in this ring is principal, but I won’t ask you to prove it.
³Hint: show all U_{x_i} are smooth.
5. Pulling back divisors. For each map below, describe explicitly the pullback of hyperplane divisors. Eg: Is the pullback defined? When is it a prime divisor? What is the (bi)degree (if defined)? In "sample chart,” how does it look?

1. The Veronese map of degree d, \(v: \mathbb{P}^n \to \mathbb{P}^{(n+d)} \).
2. The Segre map \(\sigma: \mathbb{P}^n \times \mathbb{P}^n \to \mathbb{P}^{nm+n+m} \).
3. The Plucker embedding \(G(d, k^n) \to \mathbb{P}(\wedge^d k^n) \).
4. The blowup of \(\pi: X \to \mathbb{P}^2 \) at the origin. [Caution! It could depend on which line you pull back...how?]
5. The projection from a point \(p \) not on a hypersurface \(X \in \mathbb{P}^{d+1} \): \(\pi_p: X \to \mathbb{P}^d \).

6. Invertible Sheaves. Let \(X \) be an irreducible normal variety, \(D \) a divisor on \(X \). For every open set \(U \) of \(X \), define \(\mathcal{O}_X(D)(U) = \{ f \in k(U)^* \mid div(f) + (D \cap U) \geq 0 \} \cap 0 \).

a). Show that \(\mathcal{O}_X(D) \) defines a sheaf of abelian groups on \(X \).

b). Show that \(\mathcal{O}_X(D) \) has the structure of sheaf of \(\mathcal{O}_X \)-modules. [This means that each \(\mathcal{O}_X(D)(U) \) is an \(\mathcal{O}_X(U) \)-module, compatibly with restriction maps: if \(V \subset U, \phi \in \mathcal{O}_X(U) \) and \(g \in \mathcal{O}_X(D)(U) \), then the restriction of \(\phi g \) to \(V \) is equal to \(\phi|_V g|_V \).]

c). Show that if \(D \) is Cartier, then \(\mathcal{O}_X(D) \) is a locally free \(\mathcal{O}_X \)-module of rank one. [This means that \(X \) has a cover by open affine sets \(U \) such that each \(\mathcal{O}_X(D)(U) \cong \mathcal{O}_X(U) \) as modules over \(\mathcal{O}_X(U) \).

d). Let \(D = 4L - C \) be the divisor on \(\mathbb{P}^2 \) where \(L \) is the line \(\mathbb{V}(x) \) and \(C \) is the smooth cubic \(\mathbb{V}(x^3 + y^3 + z^3) \). Explicitly compute the sections of \(\mathcal{O}_X(D) \) over each of the standard affine charts, as well as the global sections of this sheaf.

7. The tautological Bundle. Let \(\pi: L \to \mathbb{P}^n \) be the tautological bundle on \(\mathbb{P}^n \) as defined in Problem set 5. So \(L \subset \mathbb{A}^{n+1} \times \mathbb{P}^n \) is the incidence correspondence consisting of \((x, \ell) \mid x \in \ell, \) and \(\pi \) is the projection to the second factor.

a). A section of the tautological bundle over \(U \subset \mathbb{P}^n \) is a regular map \(s: U \to L \) such that \(\pi \circ s = Id_U \). Prove that the set \(\mathcal{L}(U) \) of all sections over \(U \) is a \(\mathcal{O}_{\mathbb{P}^n}(U) \) module. Prove that \(\mathcal{L} \) forms a sheaf of \(\mathcal{O}_{\mathbb{P}^n} \)-modules.

b). For a standard affine chart \(U_i \), prove that \(\mathcal{L}(U_i) \) is a free \(\mathcal{O}_{\mathbb{P}^n}(U_i) \) module of rank one.\(^4\)

c). Show that \(\mathcal{L}(U_i \cap U_j) \) is the localization of the \(\mathcal{O}_{\mathbb{P}^n} \)-module \(\mathcal{L}(U_i) \) at the regular function \(x_j/x_i \in \mathcal{O}_{\mathbb{P}^n}(U_i) \).

d). Let \(\phi_i: \mathcal{O}_{\mathbb{P}^n}(U_i) \to \mathcal{L}(U_i) \) be an isomorphism as in b. Let \(\rho_{ij} \) be the restriction map \(\mathcal{L}(U_i) \to \mathcal{L}(U_i \cap U_j) \). Explain why both \(\rho_{ij}(\phi_i(1)) \) and \(\rho_{ij}(\phi_j(1)) \) are free generators for the rank one free \(\mathcal{O}_{\mathbb{P}^n}(U_i \cap U_j) \)-module \(\mathcal{L}(U_i \cap U_j) \). Explain why this allows us to interpret the fraction \(\rho_{ij}(\phi_i(1))/\rho_{ij}(\phi_j(1)) \) as an invertible element of \(\mathcal{O}_{\mathbb{P}^n}(U_i \cap U_j) \). Explicitly compute this invertible element for your isomorphisms found in b.

e). Prove that there are no non-zero global sections of the tautological bundle, that is, that \(\mathcal{L}(\mathbb{P}^n) = 0 \).

8. Complete Linear systems. Fix a divisor \(D \) on a smooth variety \(X \). Let \(|D| \) be the set of all effective divisors linearly equivalent to \(D \). Thus \(D' \in |D| \) if and only if there exists a \(\phi \in k(X) \) such that \(D' - D = div(\phi) \).

a). Prove that if \(X \) is projective, then \(\phi \) is unique up to scalar multiple.

b). Compute \(|H|\) where \(H \) is a hyperplane on \(\mathbb{P}^n \).

c). Compute \(|2L|\) where \(L \) is a line in \(\mathbb{P}^2 \).

d). In the notation of problem 6, show there is a natural bijection \(\mathbb{P}(\mathcal{O}_X(D)(X)) \to |D| \) when \(X \) is projective.

\(^4\)By definition, this sheaf is thus invertible.