1. Do not open this exam until you are told to do so.
2. This exam has 11 pages including this cover. There are 12 problems. Note that the problems are not of equal difficulty, so you may want to skip over and return to a problem on which you are stuck.
3. Do not separate the pages of this exam. If they do become separated, write your name on every page and point this out to your instructor when you hand in the exam.
4. Please read the instructions for each individual problem carefully. One of the skills being tested on this exam is your ability to interpret mathematical questions, so instructors will not answer questions about exam problems during the exam.
5. Show an appropriate amount of work (including appropriate explanation) for each problem, so that graders can see not only your answer but how you obtained it. Include units in your answer where that is appropriate.
6. You may use any calculator except a TI-92 (or other calculator with a full alphanumeric keypad). However, you must show work for any calculation which we have learned how to do in this course.
7. If you use graphs or tables to find an answer, be sure to include an explanation and sketch of the graph, and to write out the entries of the table that you use.
8. Turn off all cell phones and pagers, and remove all headphones.
9. You must use the methods learned in this course to solve all problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. [8 points] For each of the statements below, circle “True” if the statement is always true. Otherwise circle “False”. You do not need to show any work for this problem.

a. [2 points] All even degree polynomials are even functions.

b. [2 points] If k is a positive constant, then the graph of $y = k \ln x$ is concave down.

c. [2 points] If $g(x) = e^x$ then $g^{-1}(x) = e^{-x}$ for all values of x.

d. [2 points] As $x \to \infty$, the function $m(x) = (1.05)^x$ dominates the function $d(x) = 419x^{2012}$.
2. [11 points] For full credit on this problem, you must show your work carefully. Unless specified otherwise, answers should either be in exact form or be rounded accurately to at least three decimal places.

The population of Linearville grew from 9,000 in January 2003 to 14,000 in January 2005.

a. [2 points] Find the average rate of change of the population of Linearville between January 2003 and January 2005. (Include units.)

Answer: ______________________

b. [3 points] The population of Linearville has been growing linearly since January 2000. Find a formula for \(L(t) \), the population of Linearville \(t \) years after January 2000.

Answer: \(L(t) = \) ______________________

The neighboring town of Exponential Corner has also been growing. Its population was 100 in January 2003 and had risen to 150 by January 2005.

c. [4 points] Suppose that since January 2000, the population of Exponential Corner has been growing exponentially. Find a formula for \(E(t) \), the population of Exponential Corner \(t \) years after January 2000.

Answer: \(E(t) = \) ______________________

d. [2 points] Assuming the populations continue to grow as described above, will the population of Exponential Corner ever catch up to the population of Linearville? If so, when will this happen? (Round to the nearest year.)

If not, explain how you know this.
3. [15 points] Show your work.
 a. [3 points] Find an equation for the straight line passing through the point \((2, -3)\) that is perpendicular to the line passing through the points \((1, 4)\) and \((-6, 5)\).

 Answer: \(y = \) ________________

 b. [3 points] A population of ants is growing by 25\% per day. How long will it take for the number of ants to double? (Give your answer in exact form or rounded accurately to three decimal places.)

 Answer: ________________

 c. [3 points] An ant begins at the point \((1, 0)\) and walks counterclockwise along the unit circle for a distance of 2 units and then stops. What are the coordinates of the point at which the ant stops? (Give your answer in exact form.)

 Answer: ________________

 d. [3 points] Suppose the graph of \(y = h(x)\) is obtained from the graph of \(y = 3e^{2x}\) by shifting the graph of \(y = 3e^{2x}\) to the right four units and then down five units. Find a formula for \(h(x)\).

 Answer: \(h(x) = \) ________________

 e. [3 points] Find the exact value of \(t\) if \(5e^t = 15(2^t)\). (Show each step of your work carefully.)

 Answer: \(t = \) ________________
4. [7 points] Big Ben is the third-largest free standing clock tower in the world. It has a clock on each of its four sides. The center of each clock face is 180 feet above the ground, and the minute hand of each clock is 14 feet long. Let \(m(t) \) be the height above ground, measured in feet, of the tip of a minute hand \(t \) minutes after midnight. A portion of the graph of \(y = m(t) \) is shown below.

\[y = m(t) \]

\[t \text{ (in minutes)} \]

\[y \text{ (in feet)} \]

- \((a, b)\)
- \((c, d)\)

\begin{itemize}
 \item[a.] Use the information provided in the description above to find the values of the constants \(a, b, c, \) and \(d \) shown in the graph.

 \[a = \quad b = \quad c = \quad d = \]

\begin{itemize}
 \item[b.] Find the period, amplitude, and midline of the graph of \(y = m(t) \) and find a formula for \(m(t) \). (Include units for the period and amplitude.)

 \begin{align*}
 \text{period:} & \quad \text{amplitude:} \\
 \text{midline:} & \quad \text{formula:} \quad m(t) =
 \end{align*}
\end{itemize}
5. [6 points] Let \(g \) be the function defined by

\[
g(x) = \frac{10(x - 1)(x - 2)}{(2x + 1)(x^2 + 2x - 1)}.
\]

Find all zeros, \(y \)-intercepts, and horizontal and vertical asymptotes of the graph of \(y = g(x) \). If appropriate, write “NONE” in the answer blank provided.

(Show your work and write your answers in exact form.)

zero(s): ________________

\(y \)-intercept(s): ________________

horizontal asymptote(s): ________________

vertical asymptote(s): ________________

6. [5 points] Find all solutions to the equation \(5 \sin(2t) = -\pi \) for \(0 \leq t \leq \pi \).

(Show your work clearly and give your final answer(s) in exact form.)

Answer(s): ____________________________
7. [11 points] In honor of a favorite video game, a group of students decides to build a huge slingshot on the Diag from which they will launch a variety of large toy stuffed animals.

The first “passenger” is a large stuffed panda. The height of the panda above the ground (measured in feet) \(t \) seconds after it is launched from the slingshot is \(P(t) = -16t^2 + 48t + 8 \).

a. [3 points] How long is the flying stuffed panda in the air before it lands back on the ground? (Show your work and give your answer in exact form or rounded to three decimal places.)

Answer: ________________________________

b. [4 points] Use the method of completing the square to rewrite the formula for \(P(t) \) in vertex form. (Carefully show your work step-by-step.)

Answer: \(P(t) = \) ________________________________

c. [2 points] After how many seconds does the flying stuffed panda reach its maximum height above the ground? What is that maximum height?

After __________ seconds, the panda reaches its maximum height of __________ feet.

d. [2 points] In the context of this problem, what are the domain and range of \(P(t) \)? (Use either inequalities or interval notation to give your answers.)

Domain: ________________________________ Range: ________________________________
8. [5 points] A portion of the graph of a polynomial function p is shown below. Find a possible formula for $p(x)$.

(*Assume all of the key features of the graph are shown.*)

\[y = p(x) \]

\[x \]

\[-5 -4 -3 -2 -1 1 2 3 4 5 \]

\[y \]

\[-16 -12 -8 -4 0 4 8 12 16 \]

Answer: $p(x) =$ ________________________________

9. [4 points] Suppose g is a power function such that $g(1) = 4$ and $g(10) = 1$. Find a formula for $g(x)$. (*Any numbers in your formula should be in exact form.*)

\[g(x) = \]

Answer: $g(x) =$ ________________________________
10. [11 points] An effective cleaning solution can be made by mixing vinegar and water. Starting with 2 liters of a solution that is one-half water and one-half vinegar, \(v \) liters of vineger are added to the solution. Let \(C = g(v) \) be the concentration of vinegar in the resulting solution. That is, \(g(v) = \frac{\text{Total volume of vinegar}}{\text{Total volume of solution}} \) after \(v \) liters of vinegar are added.

a. [2 points] Find a formula for \(g(v) \).

Answer:

\[
g(v) = \frac{v}{v + 2}
\]

b. [2 points] Describe, in the context of this problem, the behavior of \(g(v) \) as \(v \to \infty \).

c. [4 points] Find a formula for \(g^{-1}(C) \).

Answer:

\[
g^{-1}(C) = \frac{2C}{1 + C}
\]

d. [3 points] Find and interpret, in the context of this problem, \(g^{-1}(0.75) \).
11. [9 points] The graphs of functions g and h are shown below.

\[y = g(x) \]

\[y = h(x) \]

a. [3 points] Determine whether each of the following statements is True or False.

(i) The function g is invertible on the domain $[1, 6]$.

True False

(ii) The function h is invertible on the domain $[1, 6]$.

True False

(iii) The function defined by $g(x) - h(x)$ is an increasing function on the domain $[1, 6]$.

True False

b. [2 points] Evaluate $g(h(3))$ and $h(3)g(3)$.

Answers: $g(h(3)) = ______$ $h(3)g(3) = ______$

Some values for an invertible function f are given in the table below. Use the table together with the graphs of g and h above to answer the questions that follow.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

c. [2 points] Evaluate $f^{-1}(g(2))$.

Answer: $f^{-1}(g(2)) = ______$

d. [2 points] If j is the function defined by $j(x) = 2f(x + 1)$, evaluate $j(4)$.

Answer: $j(4) = ______$
12. [8 points] “Timely Time” is a local company that builds and sells clocks and watches. Let $C(q)$ be the cost (in dollars) for Timely Time to produce q wall clocks.

a. [2 points] Write an equation that expresses the statement “The cost of producing k clocks is m dollars.”

Answer: ________________________________

b. [2 points] Write an equation that expresses the fact that doubling the quantity of clocks produced increases Timely Time’s production costs by 80%.

Answer: ________________________________

Let $w(d)$ be the number of watches that can be produced by Timely Time for a cost of d dollars. Assume that w is an invertible function.

c. [2 points] Express the total cost for Timely Time to produce 15 clocks and 7 watches in terms of C and w.

Answer: ________________________________

d. [2 points] Suppose that $w(C(q)) > q$ for all values of q in the domain of $w(C(q))$. Give a practical interpretation of the inequality $w(C(q)) > q$ in the context of this problem.