1. Find the directional derivative of \(x^3 + y^3 + z^3 + xyz \) at \((1, 1, 2)\) in the direction \((-2, 1, 2)\).

2. Find the directions in which the directional derivative of \(ye^{-xy} \) at \((0, 2)\) is maximum and minimum. Find the directions in which it is equal to 1.

3. Two surfaces are orthogonal if their normal lines are orthogonal. Verify that \(z^2 = x^2 + y^2 \) and \(x^2 + y^2 + z^2 = r^2 \) are orthogonal at all points of intersection.

4. The figure below shows the level curves of \(f(x, y) = 3x - x^3 - 2y^2 + y^4 \). Use it to predict the critical points of \(f \). Are the critical points maxima or minima or saddle points? Use the second derivative test to confirm your reasoning.

5. Find the maximum and minimum of \(x_1 + \cdots + x_n \) subject to \(x_1^2 + \cdots + x_n^2 = 1 \). Use Lagrange multipliers.
6. Find three positive numbers whose sum is 12 and the sum of whose squares is as small as possible.

7. Use the midpoint rule with \(m = n = 2 \) to find an approximation to \(\int \int_R xy \, dx \, dy \) where \(R = [0, 2] \times [0, 2] \).

8. Find the point on the plane \(ax + by + cz = d \) at a minimum distance from the origin using the method of Lagrange multipliers.

9. Evaluate

\[
\int \int_R \sin \pi x \cos \pi y \, dx \, dy
\]

with \(R = [0, 1/4] \times [1/4, 1/2] \).