Suppose that the manufacturing company now produces three types of circuit boards, and has a contract for 10,000 of board A, 20,000 of board B, and 30,000 of board C, so that the Cobb-Douglas production constraints are

\[10000 = 5L_A^{0.3}K_A^{0.7} \]
\[20000 = 2L_B^{0.4}K_B^{0.6} \]
\[30000 = 15L_C^{0.55}K_C^{0.45}. \]

Further, suppose that each hour of labor for boards A and B costs $20, but the cost for board C is $30/hour.

Exercise 1: If there is no restriction on the total labor hours, find the minimum production cost.

Exercise 2: Now suppose that we need to produce 40,000 units of board C. Find the minimum production cost.

Exercise 3: What is the relationship between your answers in exercises 1 and 2 and the value of the Lagrange multiplier for the production constraint for board C?

Exercise 4: Bonus! Consider the two functions \(g_1(x, y, z) = x^2 - z \) and \(g_2(x, y, z) = y^3 - z \). Find the intersection of the surfaces \(g_1(x, y, z) = 0 \) and \(g_2(x, y, z) = 0 \) and graph it in MATLAB using `plot3`. Notice where there is a sharp corner, and the minimum \(y \) value on the curve.

What happens if you use the method of Lagrange multipliers to find the extreme values of the function \(f(x, y, z) = y \) subject to the two constraints \(g_1(x, y, z) = 0 \) and \(g_2(x, y, z) = 0 \)? Are \(\nabla g_1 \) and \(\nabla g_2 \) linearly independent? Explain.