LAB 5: THE THEOREMS OF GREEN, STOKES, AND GAUSS,
PART B

(c)2017 UM Math Dept
licensed under a Creative Commons
By-NC-SA 4.0 International License.

1. Objectives and Expectations for Lab 4, Part B

- Part B of Lab 4 contains less guidance.
- You are expected to answer problems that are more challenging than the ones in Part A.
- The material covered and the assignments in Part A is instructive for completing Part B.

2. Matlab Commands

Some of the MATLAB commands and concepts we will use in this lab are the following:

2.1. **Element-wise operators: .* , ./, etc.** To perform an operation as a scalar operation on each element of a vector x, we prepend a period to the operator.

2.2. **integral(fun, xmin,xmax).** This command calculates the integral \(\int_{xmin}^{xmax} \) \(fun \) \(dx \), e.g.,

\[
\text{>> integral(@(x) exp(-x.^2 + x - 1), 0, 5)}
\]

Note that we need to use element-by-element operators in the integrand.

2.3. **integral2(fun, xmin, xmax, ymin, ymax).** This is the 2-dimensional generalization of integral. By default, it integrates \(dy \) \(dx \), so that \(ymin \) and \(ymax \) are the boundaries for \(y \) that may, in general, be functions of \(x \). To change the limits of integration, so that we are integrating \(\int_{ymin(x)}^{ymax(x)} \int_{xmin}^{xmax} \frac{1}{1+x^2+2y^2} \) \(dx \) \(dy \), we have to reverse the order that MATLAB plugs variables into the integrand, e.g., with

\[
\text{>> integral2(@(y,x) 1/(1+x.^2+2*y.^2),0,1, 0,@(y) sqrt(y))};
\]

2.4. **integral3(fun, xmin, xmax, ymin, ymax, zmin, zmax).** This command computes integral of a function \(f(x,y,z) \) of 3 variables over a region of the form \(xmin \leq x \leq xmax, ymin(x) \leq y \leq ymax(x), zmin(x,y) \leq z \leq zmax(x,y) \). It functions as integral2, but with the additional arguments.

2.5. **quiver(xvec,yvec,dxvec,dyvec).** The quiver command plots vectors with components \((dxvec(i),dyvec(i)) \) at the points \((x(i),y(i)) \). Thus, to plot the vector field \(\mathbf{F} = (y \cos(x), y \sin(x)) \), we may generate a grid of points in the xy-plane with

\[
\text{>> [x,y] = meshgrid(0:2:2, 0:.2:2);}
\]

and then plot the vector field with

\[
\text{>> quiver(x, y, cos(x).*y, sin(x).*y);}
\]
3. ASSIGNMENTS

In each of the following, we explore one of the generalizations of the fundamental theorem of calculus by using MATLAB.

Exercise 1: Let \(D \) be the triangular region with vertices \((0, 0), (1, 0),\) and \((0, 1)\). This region can be written as
\[
D = \{(x, y) : 0 \leq x \leq 1, \ 0 \leq y \leq 1 - x\},
\]
and let \(C = \partial D \) be the boundary of \(D \) oriented counter clockwise, consisting of 3 oriented line segments:
\[
C_1: x(t) = t, \ y(t) = 0, \ 0 \leq t \leq 1, \\
C_2: x(t) = 1 - t, \ y(t) = t, \ 0 \leq t \leq 1, \\
C_3: x(t) = 0, \ y(t) = 1 - t, \ 0 \leq t \leq 1.
\]
• Compute the line integral
\[
\iint_C \left[e^x \log(5 + x) + \cos(y) \right] dx + \left[4x^2 \sin(x) - e^{\sin(y)} \right] dy
\]
numerically using the MATLAB command `integral`. You should consider
\[
F(x, y) = \left< e^x \log(5 + x) + \cos(y), 4x^2 \sin(x) - e^{\sin(y)} \right>
\]
and
\[
\oint_C F \cdot dr = \int_{C_1} F \cdot dr + \int_{C_2} F \cdot dr + \int_{C_3} F \cdot dr
\]
with the parametrizations \(r(t) = (x(t), y(t)) \) given above.
• Now verify Green’s Theorem
\[
\oint_C F \cdot dr = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy, \quad F = \langle P, Q \rangle,
\]
by computing the double integral on the right hand side using the definition of the domain \(D \). You should use the MATLAB command `integral2`.

Exercise 2: Let \(C \) be the curve of intersection of the cylinder \(x^2 + y^2 = 9 \) and \(x + z = 5 \) with positive (counterclockwise) orientation. Let \(F = xi + yj + zk \). Calculate the line integral \(\int_C F \cdot dr \) first by parameterizing the curve \(C \) and evaluating the line integral, using `integral`, and second by applying Stokes’ theorem. Which would be easier by hand? Which is easier numerically?
Exercise 3: Let \(V \) be the "ice-cream cone" region that is the volume bounded between the upward cone \(z = \sqrt{x^2 + y^2} \) and the half-sphere \(x^2 + y^2 + z^2 = 1 \). This region can be determined by the inequalities:

\[
\begin{align*}
-\frac{1}{\sqrt{2}} & \leq x \leq \frac{1}{\sqrt{2}}, \\
-\sqrt{\frac{1}{2} - x^2} & \leq y \leq \sqrt{\frac{1}{2} - x^2}, \\
\sqrt{x^2 + y^2} & \leq z \leq \sqrt{1 - x^2 - y^2}.
\end{align*}
\]

(1)

Let \(S \) be the surface that is the boundary of \(V \). Use the Divergence Theorem

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iiint_V (\text{div} \mathbf{F}) \, dV,
\]

i.e.,

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_V (\text{div} \mathbf{F}) \, dV,
\]

to compute the surface integral

\[
\iint_S \left(e^{\sin(y)} z^2 + \sin(x), xy + yz + zx, \cos(x) \log(1 + xy) - 3xz^2 \right) \cdot \mathbf{dS}
\]

numerically (i.e. you should compute the volume integral instead). The MATLAB command for triple integrals is \texttt{integral3} and the inequalities (1) suggest that you should take \(dV = dz \, dy \, dx \). Compare this with the calculations required to evaluate the surface integral. Which is easier (numerically, or by hand)?

References