1. Evaluate the area of the part of the surface $z = xy$ that lies within the cylinder $x^2 + y^2 = 1$.

2. Find the extreme values of $f(x, y) = 4x + 2y + 1$ on the disc $x^2 + y^2 \leq 1$.

3. Let D be the region that lies inside the circle $x^2 + y^2 = 2y$ but lies outside the circle $x^2 + y^2 = 1$. Now regard D as a lamina, and suppose that the density function is given by $\rho(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$. Find the mass of D.

4. There is a solid E whose projection on the xy-pane is the disc $x^2 + y^2 \leq 1$. Suppose that the area of the cross-section of E in the plane that is parallel to the xz-plane and passes through the point $(0, y, 0)$ is given by $A(y) = y^2$. Find the volume of E.
5. (No partial credit) Consider the following vector fields. Answer your questions but there is no need for explanation.

(1) (2 points) Which picture represents the vector field $\langle \sin(2x), 0 \rangle$?

(2) (2 points) Which picture represents the vector field $\langle y, 1 \rangle$?

(3) (3 points) Which picture represents the vector field $\langle y, x \rangle$?

(4) (3 points) Which picture represents the gradient field of $f(x, y) = x^2 + y^2$?
6. Let E be the solid region that lies above the xy-plane, below the surface $z = \sqrt{x^2 + y^2}$, and inside the sphere $x^2 + y^2 + z^2 = 9$. Find the volume of E.

7. Let E be the solid region bounded by the planes $y = 0$, $x = 0$, $z = 1$, and $x + y - z = 0$. Evaluate the integral

$$\iiint_E x \, dV.$$