1. (10 points) Find the volume below the surface \(z = x^4 + y^4 \) and above the square in the \(x-y \) plane with vertices at \((x, y) = (\pm 1, 0), (0, \pm 1)\) shown here:

![Diagram](image)

Solution: The volume is \(\frac{4}{15} \). The integration domain in the first quadrant is \(0 \leq x \leq 1, \ 0 \leq y \leq 1 - x \). Thus, the answer is

\[
4 \int_0^1 \int_0^{1-x} x^4 + y^4 \, dy \, dx = 4 \int_0^1 x^4(1-x) + \frac{(1-x)^5}{5} \, dx \\
= 4 \left(\frac{1}{5} - \frac{1}{6} + \frac{1}{30} \right) \\
= \frac{4}{15}.
\]

2. Consider the iterated triple integral

\[
\int_0^1 \int_y^1 \int_0^y f(x, y, z) \, dz \, dx \, dy.
\]

In this integral, \(z \) is innermost, \(x \) is in the middle, and \(y \) is outermost.

(a) (5 points) Rewrite the integral with \(x \) innermost, \(y \) in the middle, and \(z \) outermost.

(b) (5 points) Rewrite the integral with \(z \) innermost, \(y \) in the middle, and \(x \) outermost.

Solution: The region of integration

\[
0 \leq y \leq 1 \\
y \leq x \leq 1 \\
0 \leq z \leq y
\]
can be described as $0 \leq z \leq y \leq x \leq 1$. For part (a), rewrite it as $0 \leq z \leq 1$, $z \leq y \leq 1$, and $y \leq x \leq 1$ to get

$$\int_0^1 \int_z^1 \int_y^1 f(x, y, z) \, dx \, dy \, dz.$$

Similarly, for part (b)

$$\int_0^1 \int_0^x \int_0^y f(x, y, z) \, dz \, dy \, dx.$$

3. Let $f(x, y) = x^4 + y^4 + 4xy$.

(a) (5 points) Find three critical points of $f(x, y)$.

(b) (5 points) Pick one of the three critical points and classify it as local minimum, local maximum, or saddle.

Solution: Set $f_x = 4x^3 + 4y = 0$ and $f_y = 4y^3 + 4x = 0$ to find that $(0, 0)$, $(1, -1)$, and $(-1, 1)$ are critical points. The matrix for the second derivative test is

$$\begin{pmatrix} 12x^2 & 4 \\ 4 & 12y^2 \end{pmatrix}.$$

The second derivative test implies that $(x, y) = (0, 0)$ is a saddle. That is because the determinant is -16 and negative. The other two critical points are both local minima (determinant and trace positive).

4. (10 points) Find a critical point (local maximum or minimum) of

$$f(x, y, z) = -x \log x - 2y \log y - 3z \log z$$

subject to the constraint

$$g(x, y, z) = x + 2y + 3z - 1 = 0.$$

Evaluate f at that point. Here log is the natural logarithm, as usual, so that $\frac{d \log x}{dx} = \frac{1}{x}$.

Solution: Using the method of Lagrange multipliers, we get

$$-1 - \log x = \lambda$$

$$2(-1 - \log y) = 2\lambda$$

$$3(-1 - \log z) = 3\lambda,$$
or $x = y = z = e^{-1-\lambda}$. From the constraint equation $x + 2y + 3z = 1$, we get $x = y = z = 1/6$, which is therefore a critical point. The value of f at the critical point is $\log 6$. In fact, the critical point is a maximum (but that was not asked in the problem).

5. (10 points) Find the two points at which the parabola $y = x^2/2$ intersects the circle $x^2 + y^2 = 8$. If D is the region bounded by that parabola and circle (see below), evaluate the double integral:

$$
\int \int_D x^2 y \, dx \, dy.
$$

The region of integration D looks as follows:

Note: Once you have a numerical answer you do not need to simplify it to a fraction. In the textbook, the area element $dx \, dy$ in the integral is given as dA.

Solution: The two points of intersection are $(x, y) = (\pm 2, 2)$. To evaluate the integral,

$$
\int_{-2}^{2} \int_{x^2/2}^{\sqrt{8-x^2}} x^2 y \, dy \, dx = \int_{-2}^{2} \frac{x^2}{2} \left(8 - x^2 - \frac{x^4}{4} \right) \, dx \\
= \int_{-2}^{2} \left(4x^2 - \frac{x^4}{4} - \frac{x^6}{8} \right) \, dx \\
= 2 \times \left(\frac{4 \cdot 2^3}{3} - \frac{2^5}{10} - \frac{2^7}{7.8} \right) \\
= \frac{1088}{105}.
$$

6. Consider the integral

$$
\int \int_D \frac{dx \, dy}{(x^2 + y^2)^{1/2}},
$$

where D is the disc $(x - 1)^2 + y^2 \leq 1$.

(a) (4 points) Describe the region of integration in polar coordinates.
(b) (6 points) Evaluate the integral.

Solution: In polar coordinates, the region D is given by $-\pi/2 \leq \theta \leq \pi/2$ and $0 \leq r \leq 2 \cos \theta$. Thus, the integral is equal to

$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2 \cos \theta} r \ dr \ d\theta = \int_{-\pi/2}^{\pi/2} 2 \cos \theta \ d\theta = 4.$$

7. (10 points) Sketch the sector of the unit disc bounded by the lines $x = y$, $y = 0$, and the circle $x^2 + y^2 = 1$ in the first quadrant of the x-y plane. Assuming constant density, find the x and y coordinates of the center of mass.

Solution: Use polar coordinates and describe D as $0 \leq \theta \leq \pi/4$, $0 \leq r \leq 1$.

$$\bar{x} = \frac{\int \int_{D} x \ dx \ dy}{\int \int_{D} dx \ dy} = \frac{\int_{0}^{\pi/4} \int_{0}^{1} r \cos \theta \ r \ dr \ d\theta}{\int_{0}^{\pi/4} \int_{0}^{1} r \ dr \ d\theta} = \frac{\int_{0}^{\pi/4} \cos \theta / 3 \ d\theta}{\pi/8} = \frac{4 \sqrt{2}}{3 \pi}.$$

Thus, $\bar{x} = \frac{4 \sqrt{2}}{3 \pi}$. Similarly, $\bar{y} = \frac{4 \sqrt{2}(\sqrt{2} - 1)}{3 \pi}$.

4