1. Consider the double integral
\[\int \int_D \frac{dA}{\sqrt{x^2 + y^2}}. \]

(a) (7 points) Evaluate the double integral if \(D \) is the unit disc \(x^2 + y^2 \leq 1 \).

(b) (3 points) Suppose now that \(D \) is the solid square with vertices at \((\pm 1, \pm 1)\). Is this double integral greater, equal to, or less than the answer to part (a)?

Answer: (a) \(2\pi\). (b) Greater.

2. This problem has two parts.

(a) (6 points) Find the area of the triangle with vertices at \((0, 0, 0), (1, 1, 4), \) and \((-2, 1, -2)\).

(b) (4 points) Suppose \(a = i + j + 4k \) and \(b = -2i + j - 2k \). If \(c = 2i + j + 3k \), find the vector component of \(c \) that is perpendicular to the plane defined by \(a \) and \(b \). All vectors are assumed to originate at the origin.

Answer: (a) The area vector of the parallelogram is \((-6, -6, 3)\) and the area of the triangle is \(9/2\). (b) \(\frac{1}{3}(2i + 2j - k)\).

3. This problem has three parts.

(a) (2 points) Find the distance of the origin from the plane \(2x + 3y - 6z = 14\).

(b) (3 points) Find the point on the plane \(2x + 3y - 6z = 14\) that is closest to the origin.

(c) (5 points) The lines \((x, y, z) = (2, 2t + 1, t + 1)\) and \((x, y, z) = (3t - 2, 3, t + 1)\) do not intersect. Find the distance between the two lines.

Answer: (a) 2. (b) \(\frac{2}{7}(2, 3, -6)\). (c) The vector \(2i + 3j - 6k\) is orthogonal to both lines. The unit vector in that direction is \(u = \frac{1}{7}(2i + 3j - 6k)\). The distance is

\[((2, 1, 1) - (-2, 3, 1)) \cdot u \]

or \(\frac{2}{7}\).

4. This problem has three parts

(a) (2 points) Find \(\frac{\partial u}{\partial r}\) if \(u = x^2 + y\) and \(x = r \cos \theta, \ y = r \sin \theta\).

(b) (4 points) Find \(\frac{\partial u}{\partial r}\) if \(u = f(x, y)\) and \(x = r \cos \theta, \ y = r \sin \theta\).

(c) (4 points) Find \(\frac{\partial u}{\partial x}\) if \(u = g(r, \theta)\) and \(x = r \cos \theta, \ y = r \sin \theta\).

Answer: (a) \(2x \cos \theta + \sin \theta\). (b) \(\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta\). (c) Differentiate \(x = r \cos \theta\) as well as \(y = r \sin \theta\) with respect to \(x\) to get

\[
1 = \cos \theta \frac{\partial r}{\partial x} - r \sin \theta \frac{\partial \theta}{\partial x},
\]

\[
0 = \sin \theta \frac{\partial r}{\partial x} + r \cos \theta \frac{\partial \theta}{\partial x}.
\]

Therefore \(\frac{\partial r}{\partial x} = \cos \theta\) and \(\frac{\partial \theta}{\partial x} = -\frac{\sin \theta}{r}\). It follows that

\[
\frac{\partial u}{\partial x} = \frac{\partial g}{\partial r} \cos \theta - \frac{\partial g}{\partial \theta} \frac{\sin \theta}{r}.
\]
5. Both parts ask you to reverse the order of integration.

(a) (4 points) Rewrite the integral
\[\int_{x=0}^{1} \int_{y=0}^{x/2} f(x, y) \, dy \, dx \]
with x inner and y outer.

(b) (6 points) Rewrite the integral
\[\int_{x=0}^{1} \int_{y=x^2}^{1} f(x, y) \, dy \, dx \]
with x inner and y outer.

Answer: (a) \(\int_{y=0}^{1/2} \int_{x=0}^{2y} \) (b) \(\int_{x=0}^{1} \int_{y=x^2}^{1} \).

6. Consider the helix \((x, y, z) = (\cos t, \sin t, t) \), with t being the parameter.

(a) (2 points) If t is time and \((\cos t, \sin t, t) \) is the position of a particle at time t, find the magnitude of its acceleration.

(b) (3 points) Find the length of the helix from \(t = 0 \) to \(t = 2\pi \).

(c) (5 points) Assume that the density (mass per unit length) of the helix from \(t = 0 \) to \(t = 2\pi \) is constant and equal to 1. Find \(\bar{z} \), the z-coordinate of the center of mass of the part of the helix from \(t = 0 \) to \(t = 2\pi \).

Answer: (a) 1. (b) \(2\sqrt{2}\pi \). (c) \(\pi \).

7. In each part, the curve C is assumed to be counterclockwise. Evaluate
\[\int_{C} y \, dx \]
for the following C:

(a) (2 points) C is the circle \(x^2 + y^2 = 4 \).

(b) (4 points) C is the square with vertices at \((\pm 1, \pm 1) \).

(c) (4 points) C is the curve below (the arcs are semicircles):

Answer: (a) \(-4\pi \). (b) \(-4 \). (c) \(-4 - 2\pi \).

8. Let \(S \) be the hemispherical surface \(x^2 + y^2 + z^2 = 1 \) between the planes \(z = 0 \) and \(z = 1 \). The normal to the surface or \(dS \) is assumed to be pointing out of the center of the hemisphere.
(a) (5 points) Find the flux
\[\int \int_S F \cdot dS \]
with \(F = zk \).
(b) (5 points) Find the flux
\[\int \int_S \text{curl} F \cdot dS \]
with \(F = -yi + xj + zk \).

Answer: (a) \(\frac{2\pi}{3} \). (b) \(2\pi \).

9. The position vector is given by \(r = xi + yj + zk \).

(a) (3 points) Let \(F = |r|^2 r \). Find \(\text{div} F \).
(b) (3 points) Again let \(F = |r|^2 r \). Find the outward flux
\[\int \int_S F \cdot dS \]
with \(S \) being the surface of the cube with vertices at \((\pm1, \pm1, \pm1)\).
(c) (4 points) Now suppose \(F = \frac{r}{|r|^3} \). Find the outward flux
\[\int \int_S F \cdot dS \]
with \(S \) being the surface of the cube with vertices at \((\pm1, \pm1, \pm1)\).

Answer: (a) \(5(x^2 + y^2 + z^2) \). (b) \(40 \). (c) The divergence of \(F \) is zero everywhere except at the origin, where it generates a flux of \(4\pi \). Because the origin is inside the cube, the flux out of the cube is \(4\pi \).