1) a) For which, if any, elements of a group G is multiplication by that element a group homomorphism, i.e. for which $a \in G$ is the map $G \to G$ given by $g \mapsto ag$ a group homomorphism?
b) For which, if any, groups G is inversion $(g \mapsto g^{-1})$ a group homomorphism?
c) For which, if any, groups G is “squaring” $(g \mapsto g^2)$ a group homomorphism?

2) For each case below, list the distinct left and right cosets of H in G. Is H normal in G?

 a) The subgroup $H = \langle [3] \rangle$ of $G = \mathbb{Z}_{12}$.
 b) The subgroup H generated by $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ in $G = S_3$.

3) What are the possible orders of subgroups of S_4? For each possibility, find a subgroup of S_4 having that order.
 Hint: When constructing larger subgroups, it may be helpful to think about the symmetries of a tetrahedron (the “pyramid-like” shape built from 4 equilateral triangles).

4) Suppose that p and q are positive primes and that G is a finite group of order pq. Show that every proper subgroup of G is cyclic.

5) If $f : G \to H$ is a group homomorphism and N is a normal subgroup of G, prove that $f(N)$ is a normal subgroup of $f(G)$.

6) Give an example of groups G, K, and H such that H is a normal subgroup of K and K is a normal subgroup of G but H is not a normal subgroup of G. (Hint: Consider subgroups of D_4.)

7) Let G be a group and let $Z = Z(G)$ be the center of G.
 a) Prove that Z is normal in G.
 b) Prove that G/Z is cyclic if and only if G is abelian.
 c) Give an example of a nonabelian group G such that G/Z is abelian.

8) Let G be the group consisting of all matrices of the form
 \[
 \begin{pmatrix}
 1 & a & b \\
 0 & 1 & c \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 $(a, b, c \in \mathbb{Q})$
 with multiplication as the group operation.
a) Find $Z(G)$ (the center of G). Show that it is isomorphic to \mathbb{Q}.

b) Show that $G/Z(G)$ is isomorphic to the group $\mathbb{Q} \times \mathbb{Q}$.