1) Perform the following operations and simplify your answer.

(b) In \(\mathbb{Q}[x] \), divide \(2x^4 - x^3 + 6x^2 + 3\) by \(x^2 - 1\).

(c) In \(\mathbb{R}[x] \), divide \(x^5 + 2x^4 + x + 2\) by \(x + 2\).

2) Let \(F \) be a field.

(a) What are the units in the ring \(F[x] \)?

(b) Choose a polynomial \(f(x) \in F[x] \) and a unit \(g(x) \) in \(F[x] \). If we apply the division algorithm to divide \(f(x) \) by \(g(x) \), what is the result?

3) Let \(R \) be a ring and let \(I \) be an ideal. Show that \(R/I \) is commutative if and only if for every \(a, b \in R \) we have \(ab - ba \in I \).

4) Let \(R \) be a ring and let \(I \) be an ideal.

(a) Prove that if \(J \subset R \) is an ideal containing \(I \) then the image of \(J \) under the canonical map \(f : R \to R/I \) is an ideal.

(b) Prove that the preimage (under the canonical map as in (a)) of an ideal in the ring \(R/I \) is an ideal \(J \subset R \) containing \(I \).

Since the operations in (a) and (b) are inverses, this gives a bijection between ideals of \(R \) containing \(I \) and ideals of \(R/I \).

(c) Explicitly demonstrate this bijection when \(R = \mathbb{Z} \) and \(I = (24) = 24\mathbb{Z} \).

5) Consider the ideal \(I \) generated by the polynomial \(x^2 - 2 \) in \(\mathbb{Q}[x] \). Show that the quotient ring \(\mathbb{Q}[x]/I \) is isomorphic to the field \(R = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\} \).

6) Define the function \(D : \mathbb{R}[x] \to \mathbb{R}[x] \) to be the derivative map:

\[
D(a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n) = a_1 + 2a_2 x + \ldots + na_n x^{n-1}.
\]

Is \(D \) a homomorphism? Is it an isomorphism? Discuss what the First Isomorphism Theorem tells you in this situation.