1) Prove or disprove: if T and S are subrings of a ring R then so is $T \cap S$.

2) Prove the following statements.
 i) Let a and b be non-zero integers. Show that $(a, b + ta) = (a, b)$ for any integer t.
 ii) If $r | ab$ and $(a, r) = 1$ then $r | b$.
3) Find the inverse of \([17]\) in \(\mathbb{Z}_{25}\).

4) Consider the set \(\mathbb{R} \times \mathbb{R}\). We make this set into a ring using the following operations:

\[(a, b) + (c, d) = (a + c, b + d)\]
\[(a, b) \cdot (c, d) = (ac - bd, ad + bc)\]

Show that with these operations \(\mathbb{R} \times \mathbb{R}\) is a field.
5) Let R be a ring. Show (directly from the axioms) that $0 \cdot r = 0$ and $r \cdot 0 = 0$ for any element $r \in R$.

6) Give an example of:
 – a commutative ring without an identity, and
 – a commutative ring with identity that is not an integral domain.