<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, January 12, 2016</td>
<td>3:00pm-4:00pm</td>
<td>Planning Meeting</td>
<td>1866 East Hall</td>
</tr>
<tr>
<td>Tuesday, January 19, 2016</td>
<td>3:00pm-4:00pm</td>
<td>What is Hodge Decomposition</td>
<td>1866 East Hall</td>
</tr>
<tr>
<td>Tuesday, January 26, 2016</td>
<td>3:00pm-4:00pm</td>
<td>The Lefschetz theorem on (1,1)-classes and the Hodge conjecture</td>
<td>1866 East Hall</td>
</tr>
<tr>
<td>Tuesday, February 09, 2016</td>
<td>3:00pm-4:00pm</td>
<td>The Hodge Decomposition and the Index Theorem</td>
<td>1866 East Hall</td>
</tr>
</tbody>
</table>
Student Geometry/Topology
Tuesday, January 12, 2016, 3:00pm-4:00pm
1866 East Hall
()
Planning Meeting

Student Geometry/Topology
Tuesday, January 19, 2016, 3:00pm-4:00pm
1866 East Hall
John Kilgore (UM)
What is Hodge Decomposition

Student Geometry/Topology
Tuesday, January 26, 2016, 3:00pm-4:00pm
1866 East Hall
Takumi Murayama (UM)
The Lefschetz theorem on (1,1)-classes and the Hodge conjecture
Let X be a complex projective manifold. By the so-called "Poincare duality" theorem, every cohomology class corresponds to a homology class of complementary dimension, and so is is natural to ask: do all cohomology classes arise as the "Poincare dual" of an analytic submanifold of X? The Hodge conjecture states that, properly formulated, the answer is yes.
We will show the Lefschetz theorem on (1,1)-classes as an application of the Hodge decomposition theorem, and discuss its relationship to the Hodge conjecture. This is the second seminar talk in a series on Hodge theory in the Student Geometry/Topology seminar, but relevant material from the first talk will be restated.

Student Geometry/Topology
Tuesday, February 09, 2016, 3:00pm-4:00pm
1866 East Hall
John Kilgore (UM)
The Hodge Decomposition and the Index Theorem
I will give the ideas of the proof of the Hodge decomposition and explain how it relates to the Index theorem.