Monday, May 14, 2018

3:10pm-4:30pm
Algebraic Geometry -- Kenta Sato (University of Tokyo)
Ascending chain condition for F-pure thresholds -- 4096 East Hall

Tuesday, May 15, 2018

3:00pm-4:00pm
Arithmetic Geometry Learning Seminar -- Bhargav Bhatt (UM)
Geometric class field theory -- 4096 East Hall

Thursday, May 17, 2018

3:00pm-4:00pm
Arithmetic Geometry Learning Seminar -- Andrew Snowden (UM)
Unramified automorphic forms on GL(2) -- 4096 East Hall

4:00pm-5:30pm
Logic -- Harry Altman (University of Michigan)
Well partial orderings and their maximum extending ordinals -- 4096 East Hall
Algebraic Geometry
Monday, May 14, 2018, 3:10pm-4:30pm
4096 East Hall
Kenta Sato (University of Tokyo)
Ascending chain condition for F-pure thresholds

For a germ of a variety in positive characteristic and a non-zero ideal sheaf on the variety, we can define the F-pure threshold of the ideal by using the Frobenius morphism. This is an invariant that measures the singularities of the pair formed by the ambient variety and the ideal. In this talk, I will show that the set of all F-pure thresholds on a fixed strongly F-regular germ satisfies the ascending chain condition. This is a positive characteristic analogue of the "ascending chain condition for log canonical thresholds" in characteristic 0, which was recently proved by Hacon, McKernan, and Xu.

Arithmetic Geometry Learning Seminar
Tuesday, May 15, 2018, 3:00pm-4:00pm
4096 East Hall
Bhargav Bhatt (UM)
Geometric class field theory

Arithmetic Geometry Learning Seminar
Thursday, May 17, 2018, 3:00pm-4:00pm
4096 East Hall
Andrew Snowden (UM)
Unramified automorphic forms on GL(2)

Logic
Thursday, May 17, 2018, 4:00pm-5:30pm
4096 East Hall
Harry Altman (University of Michigan)
Well partial orderings and their maximum extending ordinals

A well partial order is a partial order all of whose extensions to a total order are well-orders. (These are often studied as well-quasi-orders, where the requirement of antisymmetry is dropped.) In 1976 De Jongh and Parikh showed that for a given WPO X, among the ordinals obtained this way there is always a maximum o(X). We will discuss the theory of WPOs and o(X), several equivalent formulations, and how o(X) can actually be computed for some concrete WPOs.