<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00am-11:00am</td>
<td>Integrable Systems and Random Matrix Theory -- Marcelo Campos (IMPA) The least singular value of a random symmetric matrix -- ZOOM ID: 926 6491 9790 Virtual</td>
<td></td>
</tr>
<tr>
<td>3:00pm-4:15pm</td>
<td>RTG Seminar on Number Theory -- Kartik Prasanna (UM) The Sakellaridis--Venkatesh conjectures -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Complex Analysis, Dynamics and Geometry -- Malavika Mukundan (UM) Dynamical approximation of entire functions -- 3096 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Integrable Systems and Random Matrix Theory -- Promit Ghosal (MIT) Fractal Geometry of the KPZ equation -- 4096 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Student Combinatorics -- Ryuichi Man (UM) Schur Polynomials and Littlewood-Richardson Rule -- 3866 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:30pm-5:30pm</td>
<td>Group, Lie and Number Theory -- Congling Qiu (Yale University) Arithmetic mixed Siegel-Weil formulas and modular forms of arithmetic divisors -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>3:00pm-4:00pm</td>
<td>Student Commutative Algebra -- Hyunsuk Kim (UM) Syzygies, Minimal resolution and Castelnuovo-Mumford regularity -- 3866 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Colloquium Series -- Jed Buchwald (California Institute of Technology) Isaac Newton and the Origin of Civilization -- on Zoom Virtual</td>
<td></td>
</tr>
<tr>
<td>5:00pm-6:00pm</td>
<td>Student Analysis -- Katja Vassilev (University of Michigan) Birkhoff Normal Form for Hamiltonian PDEs -- 3096 East Hall</td>
<td></td>
</tr>
<tr>
<td>3:00am-4:00am</td>
<td>Student Arithmetic -- Paul Mammen () Bhargava Cubes approach to quadratic forms -- 1866 East Hall</td>
<td></td>
</tr>
<tr>
<td>2:30pm-4:00pm</td>
<td>Learning Seminar in Algebraic Combinatorics -- Amanda Schwartz (University of Michigan) Tilings with Convex Polygons -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:30pm</td>
<td>Algebraic Geometry -- Stephen Pietromonaco (University of Michigan) A Theory of Gopakumar-Vafa Invariants for Orbifold Calabi-Yau Threefolds -- 4096 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Financial/Actuarial Mathematics -- Zhenhua Wang (UM) Stability of Equilibria in Time-inconsistent Stopping Problems -- 1360 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:30pm</td>
<td>Logic -- Ronnie Chen (University of Michigan) On the Joyal--Tierney descent theorem in countable model theory -- 3088 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Differential Equations -- Konstantin Matetzki (MSU) Polynuclear growth and the Toda lattice -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-12:00am</td>
<td>Arithmetic Geometry Learning -- Lena Ji (UM) The fibration method -- 4096 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>Student Dynamics/Geometry Topology -- Urshita Pal (University of Michigan) A Gentle Introduction to Representation Stability -- 3096 East Hall</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Speaker and Affiliation</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>9:00am-10:00am</td>
<td>Variational Analysis and Optimization -- Henry Wolkowicz (University of Waterloo) Strict Feasibility and Degeneracy in Linear Programming -- Virtual</td>
<td></td>
</tr>
<tr>
<td>2:00pm-3:00pm</td>
<td>Group, Lie and Number Theory -- Carlo Pagano (Concordia University) On the size and structure of images of Arboreal Galois representations (Note: special day) -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>3:00pm-4:00pm</td>
<td>Applied Interdisciplinary Mathematics (AIM) -- Alexandre Watson (University of Minnesota) Moire-scale PDE models of twisted bilayer graphene -- 1084 East Hall</td>
<td></td>
</tr>
<tr>
<td>3:00pm-4:00pm</td>
<td>Combinatorics -- Yibo Gao (University of Michigan) Symmetric structures in the strong Bruhat order -- 4088 East Hall</td>
<td></td>
</tr>
<tr>
<td>3:00pm-3:50pm</td>
<td>Student Algebraic Geometry -- James Hotchkiss (Michigan) The exponential exact sequence -- 2866 East Hall</td>
<td></td>
</tr>
<tr>
<td>4:00pm-5:00pm</td>
<td>MCAIM Graduate Seminar -- April Nellis (University of Michigan) A neural network approach to high-dimensional optimal switching problems with jumps -- 2866 East Hall</td>
<td></td>
</tr>
</tbody>
</table>
Integrable Systems and Random Matrix Theory
Monday, October 31, 2022, 10:00am-11:00am
ZOOM ID: 926 6491 9790 Virtual
Marcelo Campos (IMPA)

The least singular value of a random symmetric matrix

Let A be a $n \times n$ symmetric matrix with $(A_{i,j})_{i \leq j}$ independent and identically distributed according to a subgaussian distribution. I will present a recent result in which we provide lower tail estimates for the least singular value of A which are tight up to a constant factor. This is joint work with Matthew Jenssen, Marcus Michelen and Julian Sahasrabudhe.

A recording of the talk can be found here.

RTG Seminar on Number Theory
Monday, October 31, 2022, 3:00pm-4:15pm
4088 East Hall
Kartik Prasanna (UM)

The Sakellaridis--Venkatesh conjectures

The goal of the S-V conjectures is to understand the relation between automorphic periods and L-values, as well as questions about distinction, both locally and globally. The motivating theorem is that of Tunnell-Saito-Waldspurger (T-S-W) for GL_2 and its inner forms, later generalized by the Gan-Gross-Prasad (G-G-P) and Ichino-Ikeda (I-I) conjectures. The SV conjectures are a further vast generalization of this circle of ideas to the setting of spherical varieties, though not yet formulated at the same level of precision. I will start by recalling the work of T-S-W, G-G-P and I-I to put things in context, then explain how the S-V conjectures generalize all of this.
Post singularly finite holomorphic functions are entire functions for which the forward orbit of the set of critical and asymptotic values is finite. Motivated by the work of Bodelón-Devaney-Hayes-Roberts-Goldberg-Hubbard on approximating exponential functions dynamically by unicritical polynomials, we ask the following question:

Given a post singularly finite entire function f, can f be realized as the locally uniform limit of a sequence of post critically finite polynomials?

In joint work (in progress) with Nikolai Prochorov and Bernhard Reinke, we show how we may answer this question in the affirmative.

The Kardar-Parisi-Zhang (KPZ) equation is a fundamental stochastic PDE related to many important models like random growth processes, Burgers turbulence, interacting particles system, random polymers etc. In this talk, we focus on how the tall peaks and deep valleys of the KPZ height function grow as time increases. In particular, we will ask what is the appropriate scaling of the peaks and valleys of the $(1+1)$-d KPZ equation and whether they converge to any limit under those scaling. These questions will be answered via the law of iterated logarithms and fractal dimensions of the level sets. The talk will be based on joint works with Sayan Das and Jaeyun Yi. If time permits, I will also mention an interesting story about the $(2+1)$-d and $(3+1)$-d case (work in progress with Jaeyun Yi).

The Schur polynomials are an important collection of symmetric polynomials indexed by partitions, and the Littlewood-Richardson rule provides a combinatorial method to express the product of two Schur polynomials as a linear combination of Schur polynomials. In this talk, I shall begin with an introduction to the notion of tableaux and use it to define Schur polynomials. Then, I will state and prove the Littlewood-Richardson rule, and discuss some of its implications in representation theory.
Group, Lie and Number Theory
Monday, October 31, 2022, 4:30pm-5:30pm
4088 East Hall
Congling Qiu (Yale University)
Arithmetic mixed Siegel-Weil formulas and modular forms of arithmetic divisors

The classical Siegelâ€“Weil formula relates theta series to Eisenstein series and its arithmetic version is central in Kudla's program. I will discuss arithmetic mixed Siegel-Weil formulas. I will focus on the one in the work of Gross and Zagier, and the one in my recent work. As an application, I obtained modular generating series of arithmetic extensions of Kudla's special divisors for unitary Shimura varieties over CM fields with arbitrary split level. This provides a partial solution to a problem of Kudla.

Student Commutative Algebra
Tuesday, November 01, 2022, 3:00pm-4:00pm
3866 East Hall
Hyunsuk Kim (UM)
Syzgies, Minimal resolution and Castelnuovo-Mumford regularity

Parallel to the story of syzygies for modules over local rings, we can implant the situation to graded modules over graded rings and study graded minimal free resolutions. I will talk about how we can use them in the context of algebraic geometry to obtain effective results.

Colloquium Series
Tuesday, November 01, 2022, 4:00pm-5:00pm
on Zoom Virtual
Jed Buchwald (California Institute of Technology)
Isaac Newton and the Origin of Civilization

Isaac Newton, who renovated the foundations of mathematics, optics, and mechanics in the 17th century, aimed also to overturn the entire history of civilization. By the late 1690s Newton had become convinced that the natural rate of population growth implied that elaborately organized social life had not arisen until near the time of Solomon's kingdom. He canvassed ancient texts for words that could be pruned and transformed into supporting evidence deploying in the process the earliest known procedures for handling discrepant data, and reconstructing the very plan of Solomon's temple. Here we will find Newton's unorthodox religious convictions interacting in complex ways with the new methods that he had introduced into experimental science. And we will also see how the most sophisticated of techniques can produce error when data is massaged to fit a strongly-held conviction.

Zoom link:
Student Analysis
Tuesday, November 01, 2022, 5:00pm-6:00pm
3096 East Hall
Katja Vassilev (University of Michigan)
Birkhoff Normal Form for Hamiltonian PDEs

In this talk, we will use Birkhoff Normal Form to prove stability for specific (strongly-nonresonant) PDEs. We will begin with an overview of Hamiltonian Formalism for PDEs. Then, we will discuss the non-resonance conditions that we need and why we need them. The brunt of the talk will focus on the statement of Birkhoff Normal Form and how it can be used to prove long-time stability of a Hamiltonian PDE. We will also discuss the algorithm for Birkhoff Normal Form. Time permitting, we will discuss more recent work that has proved Nekhoroshev time stability for the NLS with a specific convolution potential.

Learning Seminar in Algebraic Combinatorics
Wednesday, November 02, 2022, 2:30pm-4:00pm
4088 East Hall
Amanda Schwartz (University of Michigan)
Tilings with Convex Polygons

I will discuss tilings with convex polygons and their relationship to the dimer model. I will introduce certain types of tilings called T-graphs and discuss connections to Dehn's theorem about tiling a rectangle with squares and Menelaus' theorem from Euclidean geometry.

Student Arithmetic
Wednesday, November 02, 2022, 3:00pm-4:00pm
1866 East Hall
Paul Mammen ()
Bhargava Cubes approach to quadratic forms

The foundations of binary quadratic forms were laid in the 19th century by Gauss. We shall look at a novel approach to this classical theory due to Manjul Bhargava centered around the Bhargava Cube, a cube with numbers at the vertices which encode the information about related quadratic forms.
The first part of the talk will be an expository survey of the Gopakumar-Vafa (GV) invariants of a Calabi-Yau threefold. The GV invariants are "virtual counts" of genus g curves in a fixed curve class. They are the best such invariants in that they conjecturally: (1) most accurately reflect the content of genus g curves in the class; (2) are zero for all but finitely many g in a fixed class; and (3) they underlie all other curve-counting theories people may have heard of (Gromov-Witten, Donaldson-Thomas, Pandharipande-Thomas). My main example will be a local K3 surface. In the second part of the talk, I will describe work in progress with Jim Bryan where we develop the theory of GV invariants for certain orbifold Calabi-Yau threefolds. I'll give formulas for the invariants in terms of modular forms and theta functions for the case of local orbifold K3 surfaces.

We investigate the stability of equilibrium-induced optimal values with respect to reward functions (which is denoted by f) and transition kernels (which is denoted by Q) for time-inconsistent stopping problems under non-exponential discounting in discrete time. First, with locally uniform convergence of f and Q equipped with total variation distance, we show that the optimal value is semi-continuous w.r.t. (f,Q). We provide examples showing that exact continuity may fail. Next we show that, with the uniform convergence of f and Q, the optimal value is continuous w.r.t. (f, Q) under a relaxed limit over epsilon-equilibria. This is a joint work with Erhan Bayraktar and Zhou Zhou.

The Joyal--Tierney descent theorem in topos theory, when stated in model-theoretic terms, says that given an infinitary interpretation inducing a "continuous open quotient" between spaces of models, the "quotient" theory may be recovered as the "equivariant" part of the theory into which it's interpreted. I will give an exposition of the Joyal--Tierney theorem from this perspective. No knowledge of toposes or category theory will be needed.
Differential Equations
Thursday, November 03, 2022, 4:00pm-5:00pm
4088 East Hall
Konstantin Matetski (MSU)
Polynuclear growth and the Toda lattice

Polynuclear growth is one of the basic models in the Kardar-Parisi-Zhang universality class, which describes a one-dimensional crystal growth. For a particular initial state, its one-point value equals the length of the longest increasing subsequence for uniformly random permutations (whose asymptotic behavior was first studied by S. Ulam). In my joint work with J. Quastel and D. Remenik, we computed the distribution function of the polynuclear growth with arbitrary initial conditions. These formulas allowed us to express the distribution function in terms of the solutions of the Toda lattice, one of the classical integrable systems. A suitable rescaling of the model yields a non-trivial continuous limit of the polynuclear growth (the KPZ fixed point) and the respective equations (Kadomtsev-Petviashvili).

Arithmetic Geometry Learning
Thursday, November 03, 2022, 4:00pm-12:00am
4096 East Hall
Lena Ji (UM)
The fibration method

Student Dynamics/Geometry Topology
Thursday, November 03, 2022, 4:00pm-5:00pm
3096 East Hall
Urshita Pal (University of Michigan)
A Gentle Introduction to Representation Stability

Representation Stability is a phenomenon observed in many families of spaces - such as the pure braid groups, flag varieties, etc. - where the (co)homologies of a growing family of spaces stabilize as representations of a group.
In this talk I will explain this phenomenon by focusing on (pure) braid groups as an example, with lots of pictures and minimal prerequisites.
Arboreal Galois groups are constructed upon iterating a rational function. A general expectation about them is that over arithmetic fields these Galois groups should be as complicated as possible, unless the dynamics of the rational map is of an extremely special kind. What the word "special" exactly means, depends on the property at hand. We will discuss three instances, the Galois groups being topologically big (special is conjectured to be "post-critically finite maps" in analogy of Serre's open image theorem), the Galois group being non-abelian (special is conjectured to be "conjugate to a Chebichev or a power polynomial"), the sequence of Galois groups of the iterates are big in size (special here is conjecture to be given by "exceptional maps"). Namely I will discuss past and ongoing joint work in progress with Andrea Ferraguti on each of these conjectures and how they relate to each other.

Arboreal Galois representations (Note: special day)

Applied Interdisciplinary Mathematics (AIM)
Friday, November 04, 2022, 3:00pm-4:00pm
1084 East Hall
Alexandre Watson (University of Minnesota)
Moiré-scale PDE models of twisted bilayer graphene

2D materials are materials consisting of a single sheet of atoms. The first 2D material, graphene, a single sheet of carbon atoms, was isolated in 2005. In recent years, attention has shifted to materials created by stacking 2D materials with a relative twist. Such materials are known as moiré materials because of the approximate periodicity of their atomic structures over long distances, known as the moire pattern. In 2018, experiments showed that, when twisted to the first so-called "magic" angle (approximately 1 degree), twisted bilayer graphene exhibits exotic quantum phenomena such as superconductivity. I will present the first rigorous justification of the Bistritzer-MacDonald moiré-scale PDE model of twisted bilayer graphene, which played a critical role in identifying twisted bilayer graphene's magic angles, from a microscopic tight-binding model. If time permits, I will discuss the chiral model, a simplification of the Bistritzer-MacDonald model with remarkable spectral properties.

Combinatorics
Friday, November 04, 2022, 3:00pm-4:00pm
4088 East Hall
Yibo Gao (University of Michigan)
Symmetric structures in the strong Bruhat order

The Bruhat order encodes algebraic and topological information of Schubert varieties in the flag manifold and possesses rich combinatorial properties. In this talk, we discuss three interrelated stories regarding the Bruhat order: self-dual Bruhat intervals, Billey-Postnikov decompositions and automorphisms of the Bruhat graph. This is joint work with Christian Gaetz.
The exponential exact sequence is a short exact sequence of sheaves on a smooth complex manifold, e.g., a smooth complex projective variety. The goal of the talk is to describe the corresponding long exact sequence of cohomology groups. We will see that, far from being mundane, the long exact sequence connects a number of interesting invariants of the variety, including the Picard group, the Chern character, Hodge structures, the Brauer group, and the topological Brauer group. No prior background on these topics is necessary.

MCAIM Graduate Seminar
Friday, November 04, 2022, 4:00pm-5:00pm
2866 East Hall
April Nellis (University of Michigan)
A neural network approach to high-dimensional optimal switching problems with jumps

We develop a backward-in-time machine learning algorithm that uses a sequence of neural networks to solve optimal switching problems in energy production, where electricity and fossil fuel prices are subject to stochastic jumps. We then apply this algorithm to a variety of energy scheduling problems, including novel high-dimensional energy production problems. Our experimental results demonstrate that the algorithm performs with accuracy and experiences linear to sub-linear slowdowns as dimension increases, demonstrating the value of the algorithm for solving high-dimensional switching problems.

Variational Analysis and Optimization
Friday, November 04, 2022, 9:00am-10:00am
Virtual
Henry Wolkowicz (University of Waterloo)
Strict Feasibility and Degeneracy in Linear Programming

Currently, the simplex method and the interior point method are indisputably the most popular algorithms for solving linear programs. Unlike general conic programs, linear programs with a finite optimal value do not require strict feasibility in order to establish strong duality. Hence strict feasibility is often less emphasized. In this note we discuss that the lack of strict feasibility necessarily causes difficulties in both simplex and interior point methods. In particular, the lack of strict feasibility implies that every basic feasible solution is degenerate. We achieve this using facial reduction and simple means of linear algebra. Furthermore, we emphasize that facial reduction involves two steps where the first guarantees strict feasibility, and the second recovers full-row rankness of the constraint matrix.

(joint work with: Jiyoung (Haesol) Im)