We propose a two-sided jump model for credit risk by extending the Leland-Toft endogenous default model based on the geometric Brownian motion.
The model shows that jump risk and endogenous default can have significant impacts on credit spreads, optimal capital structure, and implied volatility of equity options: (1) The jump and endogenous default can produce a variety of non-zero credit spreads, including upward, humped, and downward shapes; interesting enough, the model can even produce, consistent with empirical findings, upward credit spreads for speculative grade bonds. (2) The jump risk leads to much lower optimal debt/equity ratio; in fact, with jump risk, highly risky firms tend to have very little debt. (3) The two-sided jumps lead to a variety of shapes for the implied volatility of equity options, even for long maturity options; and although in generel credit spreads and implied volatility tend to move in the same direction under exogenous default models, but this may not be true in presence of endogenous default and jumps. In terms of mathematical contribution, we give a proof of a version of the ``smooth fitting'' principle for the jump model, justifying a conjecture first suggested by Leland and Toft under the Brownian model.
|