Applied and Interdisciplinary Mathematics Seminar Friday, 4 April, 3:10-4:00pm, 1084 East Hall |
|---|
|
Abstract |
|---|
This work will consider two key issues previously neglected in our Lagrangian particle model; the incorporation of arbitrary high order time stepping methods, based on Spectral Deferred Correction (SDC), and the development of sufficiently smooth regularization methods which are consistent with high order time stepping. Spectral Deferred Correction is based on a low order predictor corrector method where a corrector, which is successive applied, is formulated via a Picard integral equation for the residual. We will demonstrate the utility of using high order methods in the correction step by considering both the region of absolute stability and our own metric, which we dub the accuracy plot. In addition, we have formally established that if Runga-Kutta 2, 3 or 4 is used in the correction step, the accuracy of the scheme will increase by 2,3 or 4 respectively upon each iteration of the correction. We present the associated theorems and give some discussion for the spatial case of forward Euler. We next turn our attention to the simulation of $N$ particles interacting via long range forces and demonstrate the need to high continuity of the regularization chosen, so as to maintain high order in SDC time stepping. It will be demonstrated that apparently handling the $N$ particle system is the first step in the development of an arbitrary high order accuracy Lagrangian particle method for the VP system.
This is joint work with R. Krasny, J. Qiu and B. Ong.
|