Simulation of heteroepitaxial growth using kinetic Monte Carlo (KMC) is computationally
challenging due the long-range nature of elastic interactions. This talk
will address several ideas that we have developed in order improve the efficiency
of our algorithms. First, the Fourier-multigrid method for fast computation of
the elastic displacement field will be discussed. Next, the principle of energy
localization will be stated, which when combined with the expanding box method allows one
to accurately compute changes in elastic energy using local calculations. A technique
for obtaining inexpensive upper bounds on transition rates will be presented.
These ideas are combined to allow one simulate heteroepitaxy using KMC in physically
interesting regimes. This is joint work with G. Russo and T. Schulze.
|