Date: Tuesday, November 07, 2017
Title: Number theoretic results in a family of number fields
Abstract:
Unconditional results without an unproved hypothesis such as the generalized Riemann hypothesis (GRH) are very weak for an individual number field. But
if we consider a family of number fields, one can prove just as strong results as we would assume GRH, in the form: (1) average result in the family; (2) the result is valid for almost all members except for a density zero set. We will explain this philosophy using examples of logarithmic derivatives of Lfunctions, residues of Dedekind zeta functions, and least primes in a conjugacy class.
Speaker: Henry Kim
Institution: University of Toronto
