The University of Michigan Student Combinatorics Seminar
|
|---|
|
Abstract |
|---|
Counting algebraic curves with certain prescribed properties is an old
problem going back more than 150 years. In this talk I will describe
recent progress on the following question: How many algebraic plane
curves with a given number of nodes and given degree pass through a
sufficient number of generic points? This number turns out to be a
polynomial (Fomin-Mikhalkin) if the degree is large. Using tropical
geometry and ``floor diagrams" I will show you some new
(node) polynomials and a few other results about them, and try to
explain what all this has to do with string theory.
|