Financial/Actuarial Mathematics

Date:  Tuesday, December 11, 2012
Location:  1360 East Hall (3:00 PM to 4:00 PM)

Title:  Equilibrium pricing in incomplete markets under translation invariant preferences

Abstract:   We propose a general discrete-time framework for deriving equilibrium prices of financial securities. It allows for heterogeneous agents, unspanned random endowments and convex trading constraints. We give a dual characterization of equilibria and provide general results on their existence and uniqueness. In the special case where all agents have preferences of the same type, and in equilibrium, all random endowments are replicable by trading in the financial market, we show that a one-fund theorem holds and give an explicit expression for the equilibrium pricing kernel. If the underlying noise is generated by nitely many Bernoulli random walks, the equilibrium dynamics can be described by a system of coupled backward stochastic di fference equations, which in the continuous-time limit becomes a multidimensional backward stochastic di fferential equation. If the market is complete in equilibrium, the system of equations decouples, but if not, one needs to keep track of the prices and continuation values of all agents to solve it. Joint work with Ulrich Horst, Michael Kupper and Traian Pirvu.

Paper is available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1755610

1452_EQP2012UM.pdf


Speaker:  Patrick Cheridito
Institution:  Princeton University

Event Organizer:   Erhan Bayraktar    erhan@umich.edu

 

Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact math-webmaster@umich.edu

Back to previous page
Back to UM Math seminars/events page.

   

Department of Mathematics   |   2074 East Hall   |  530 Church Street  
Ann Arbor, MI 48109-1043
Phone: 734.764-0335   |   Fax: 734.763-0937

The page last modified Tuesday, 02-Oct-2012 14:00:35 EDT
Site errors should be directed to math-webmaster@umich.edu