Differential Equations

Date:  Thursday, February 21, 2013
Location:  4088 East Hall (4:00 PM to 5:00 PM)

Title:  CONVEX ENTROPY, HOPF BIFURCATION, AND VISCOUS AND INVISCID SHOCK STABILITY

Abstract:   We discuss relations between one-dimensional inviscid and viscous stability/bifurcation of shock waves in continuum-mechanical systems and existence of a convex entropy. In particular, we show that the equations of gas dynamics admit equations of state satisfying all of the usual assumptions of an ideal gas, along with thermodynamic stability- i.e., existence of a convex entropy- yet for which there occur unstable inviscid shock waves. For general 3x3 systems (but not up to now gas dynamics), we give numerical evidence showing that viscous shocks can exhibit Hopf bifurcation to pulsating shock solutions. Our analysis of inviscid stability in part builds on the analysis of R. Smith characterizing uniqueness of gas dynamical Riemann solutions in terms of the equation of state of the gas, giving an analogous criterion for stability of individual shocks.


Speaker:  Kevin Zumbrun
Institution:  Indiana U.

Event Organizer:     

 

Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact math-webmaster@umich.edu

Back to previous page
Back to UM Math seminars/events page.

   

Department of Mathematics   |   2074 East Hall   |  530 Church Street  
Ann Arbor, MI 48109-1043
Phone: 734.764-0335   |   Fax: 734.763-0937

The page last modified Tuesday, 02-Oct-2012 14:00:35 EDT
Site errors should be directed to math-webmaster@umich.edu