Analysis/Probability

Date:  Wednesday, February 27, 2013
Location:  4096 East Hall (4:10 PM to 5:00 PM)

Title:  Some remarks on Mahler's conjecture for convex bodies

Abstract:   The volume product (Mahler volume) of origin symmetric convex body K is just a product of volume of K and its its dual/polar body. It turned out to be quite a useful object in Functional Analysis and Convex Geometry. Santalo inequality tell us that the volume product takes its maximal value at the Euclidean Ball. Mahler conjectured that the volume product is minimized by a cube. Despite many important partial results, the conjecture is still open in dimensions 3 and higher. In this talk we will discuss some recent progress and ideas concerning this conjecture.


Speaker:  Artem Zvavitch
Institution:  Kent State University

Event Organizer:     

 

Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact math-webmaster@umich.edu

Back to previous page
Back to UM Math seminars/events page.

   

Department of Mathematics   |   2074 East Hall   |  530 Church Street  
Ann Arbor, MI 48109-1043
Phone: 734.764-0335   |   Fax: 734.763-0937

The page last modified Tuesday, 02-Oct-2012 14:00:35 EDT
Site errors should be directed to math-webmaster@umich.edu