Seminar Event Detail

Differential Equations

Date:  Thursday, November 19, 2015
Location:  4088 East Hall (4:00 PM to 5:00 PM)

Title:  Entropies and Uniqueness of Weak Solutions to Multi-Dimensional Compressible Euler Systems

Abstract:   For the ideal compressible Euler systems, which are fundamental in compressible fluid-dynamics and pro-type examples of nonlinear hyperbolic
systems, one of the main features is that the characteristic speeds of a wave propagation depend on the wave itself which leads to the finite-time formation of shocks in general. Thus one has to work with weak solutions globally. Yet the uniqueness of the "physical" solutions becomes a challenging issue. In the one-dimensinal case, various admissible criterion have been introduced to rule out the non-physical
solutions. In particular, the physical entropy can guarantee the uniqueness of weak solutions at least in the case of small variations. However, in higher space dimensions, for some given initial data, there are infinitely many highly oscillatory solutions (wild solutions) which are bounded, measurable and satisfying the physical entropy condition. In this talk, I will review some progress on the constructions of such "wild solutions" by a method of convex integration; present some results on the structure of such "wild solutions"; and investigate the effects of lower order dissipations. Some open problems will be discussed too.


Speaker:  Zhouping Xin
Institution:  Chinese University, Hongkong/CMSA, Harvard

Event Organizer:     


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.