Date: Friday, September 16, 2016
Location: 1084 East Hall (3:00 PM to 4:00 PM)
Title: Stability through a geometric lens
Abstract: Drawing motivation from the theory of dynamical systems, traveling waves can be viewed as fixed points of a flow on an infinite dimensional manifold. As such, the eigenvalue problem associated with linearizing about the traveling wave is often reduced to a boundary value problem of a linear nonautonomous ordinary differential equation on the line. In such problems, one can use the geometry of vector bundles and the Grassmannian to recast the original (temporal) spectral problem as a geometric condition. I plan to talk about a couple of examples of how this technique has been applied, first with some scalarvalued partial differential equations and then, if time permits, with systems.
Files:
Speaker: Robby Marangell
Institution: Sydney University
Event Organizer: Peter Miller millerpd@umich.edu
