Date: Thursday, October 26, 2017
Location: 3096 East Hall (4:00 PM to 5:30 PM)
Title: Higher degree versions of the Central Sets Theorem, II
Abstract: The Central Sets Theorem is a Ramseytheoretic result due to Furstenberg, from 1981, and multiple generalizations of it (in a variety of different directions) have been proved afterwards (to the best of my knowledge, the currently most general statement is due to De, Hindman and Strauss in 2008, but there are also many relevant results due to Bergelson). This is the second of a series of two talks, where we will explain how to interpret the Central Sets Theorem as a statement about linear polynomials in a polynomial ring with countably many variables, and prove a couple of natural generalizations involving polynomials of higher degree. The main tool that we use in our proof is the algebra of the CechStone compactification (that is, these are "ultrafilter proofs").
Files:
Speaker: David FernandezBreton
Institution: University of Michigan
Event Organizer: David Fernandez Breton logiclist@umich.edu
