Date: Friday, January 19, 2018
Location: 2866 East Hall (4:10 PM to 5:30 PM)
Title: TaylorWilesKisin patching and mod l multiplicities in Shimura curves (Note special day/room)
Abstract: In the early 1990s Ribet observed that the classical multiplicity one results for modular curves, which are a consequence of the qexpansion principle, fail to generalize to Shimura curves. Specifically he found examples of Galois representations which occur with multiplicity 2 in the mod l cohomology of a Shimura curve with discriminant pq and level 1.
I will describe a new approach to proving multiplicity statements for Shimura curves, using the TaylorWilesKisin patching method (which was shown by Diamond to give an alternate proof of multiplicity one in certain cases), as well as specific computations of local Galois deformation rings done by Shotton. This allows us to reinterpret and generalize Ribet's result. I will prove a "multiplicity 2^k" statement in the minimal level case, where k is a number depending only on local Galois theoretic data.
Time permitting I will also describe joint work (in progress) with Jack Shotton, in which we use these techniques to prove new cases of Ihara's Lemma for Shimura curves, which are not covered by the work of Diamond and Taylor.
Files:
Speaker: Jeff Manning
Institution: Univ of Chicago
Event Organizer: Kartik Prasanna
