Date: Thursday, February 08, 2018
Location: B735 East Hall (3:00 PM to 4:00 PM)
Title: Subadditivity and Symbolic Powers
Abstract: An important problem in commutative algebra is studying the relationship between symbolic and ordinary ideals. One striking result in this direction was found by EinLazarsfeldSmith, who showed that for regular rings in characteristic 0, the dnth symbolic power of any ideal is contained in the nth ordinary power of that ideal, where d is the dimension of the ring. Their method proved to be quite powerful, and was adapted to the positive characteristic setting by Hara and the mixed characteristic setting by Ma and Schwede.
In this talk, we will discuss an approach to extending the EinLazarsfeldSmith method to the nonregular setting by coming up with a new subadditivity formula for test ideals. Recent joint work with Javier CarvajalRojas shows that this approach works for segre products of polynomial rings. Afterwards, we will talk about how applying this approach to any toric variety reduces to solving a certain combinatorial problem.
Files:
Speaker: Daniel Smolkin
Institution: University of Utah
Event Organizer:
