Date: Monday, February 25, 2019
Location: 4096 East Hall (4:00 PM to 6:00 PM)
Title: Counting geodesics on flat surfaces
Abstract: An abelian differential induces a flat metric with saddle points such that the underlying Riemann surface can be realized as a polygon with edges pairwise identified by translation. Varying the shape of such polygons induces an SL(2,R) action on moduli spaces of abelian differentials, called Teichmueller dynamics. Generic flat surfaces in an SL(2,R) orbit closure exhibit similar properties from the viewpoint of counting geodesics of bounded lengths, whose asymptotic growth rates satisfy a formula of SiegelVeech type. In this talk I will give an introduction to this topic, with a focus on computing certain SiegelVeech constants via intersection theory on moduli spaces.
Files:
Speaker: Dawei Chen
Institution: Boston College
Event Organizer:
