Date: Friday, November 08, 2019
Location: 1084 East Hall (3:00 PM to 4:00 PM)
Title: When do interacting particles gravitate to the vertices of a regular simplex?
Abstract: Consider a pressureless gas interacting through an attractiverepulsive potential given as a difference of power laws and normalized so that its unique minimum occurs at unit separation. For a range of exponents corresponding to mild repulsion and strong attraction, we show that the minimum energy configuration of gas is uniquely attained  apart from translations and rotations  by equidistributing the particles of gas over the vertices of a regular topdimensional simplex (i.e. an equilateral triangle in two dimensions and regular tetrahedron in three).
If the attraction is not assumed to be strong, we show these configurations are at least local energy minimizers in the relevant dinfinity metric from optimal transportation, as are all of the other uncountably many unbalanced configurations with the same support. We infer the existence of phase transitions.
An ingredient in the proof which may have independent interest is the establishment of a simple isodiametric variance bound which generalizes Popoviciu's inequality from one to higher dimensions and characterizes regular simplices: it shows that among probability measures on R^n whose supports have at most unit diameter, the variance around the mean is maximized precisely by those measures which assign mass 1/(n + 1) to each vertex of a (unitdiameter) regular simplex.
Based on preprint with Tongseok Lim at https://arxiv.org/abs/1907.13593
Files:
Speaker: Robert McCann
Institution: University of Toronto
Event Organizer: Jun Zhang junz@umich.edu
