Seminar Event Detail


Algebraic Geometry

Date:  Wednesday, December 04, 2019
Location:  4096 East Hall (4:00 PM to 5:20 PM)

Title:  o-minimal GAGA and applications to Hodge theory

Abstract:   For a complex projective variety, Serre's classical GAGA theorem asserts that the analytification functor from algebraic coherent sheaves to analytic coherent sheaves is an equivalence of categories. For non-proper varieties, however, this theorem easily fails. In joint work with Y. Brunebarbe and J. Tsimerman, we show that a GAGA theorem holds even in the non-proper case if one restricts to analytic structures that are "tame" in a sense made precise by the notion of o-minimality. This result has particularly important applications to Hodge theory, and we will explain how it can be used to prove a conjecture of Griffiths on the quasiprojectivity of the images of period maps. We will also discuss some applications to moduli theory.

Files:


Speaker:  Benjamin Bakker
Institution:  University of Georgia

Event Organizer:     

 

Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact math-webmaster@umich.edu

Back to previous page
Back to UM Math seminars/events page.