Seminar Event Detail


Date:  Friday, September 30, 2011
Location:  3866 East Hall (4:10 PM to 5:00 PM)

Title:  On singularity confinement for the pentagram map

Abstract:   The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a typical singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz. We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated (twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space.


Speaker:  Max Glick
Institution:  U. Michigan

Event Organizer:     


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.