Seminar Event Detail

RTG Seminar on Number Theory

Date:  Monday, September 27, 2021
Location:  4088 East Hall (3:00 PM to 4:00 PM)

Title:  A generalization of a zeta function of Cohen--Lenstra

Abstract:   In the famous 1983 paper, when studying the heuristic distribution of class groups of imaginary quadratic fields, Cohen and Lenstra considered the weighting of a finite abelian group G with a weight proportional to 1/#Aut(G). More generally, for a given Dedekind domain R, they studied the statistics of finite-cardinality R-modules under the 1/#Aut weighting. They defined a "zeta" function \sum_M 1/#Aut(M) |M|^{-s} summing over all finite-cardinality R-modules, and they showed that it is an infinite product involving the Dedekind zeta function of R. In this talk, we discuss this Cohen--Lenstra zeta function defined for other families of rings, where the known results are organized in terms of the Krull dimension. The "nodal singularity" R=Fq[u,v]/(uv) is a surprisingly interesting example that gives rise to a peculiar q-series, which we will describe in more detail.


Speaker:  Yifeng Huang
Institution:  University of Michigan

Event Organizer:     


Edit this event (login required).
Add new event (login required).
For access requests and instructions, contact

Back to previous page
Back to UM Math seminars/events page.