Optimization Problems with Stochastic Order Constraints

Darinka Dentcheva

Stevens Institute of Technology, Hoboken, New Jersey, USA

Research supported by NSF awards CMII-0965702

Ann Arbor, February 28th 2013
Motivation

Risk-Averse Optimization Models

Choose a decision $z \in Z$, which results in a random outcome $G(z) \in \mathcal{L}_p(\Omega, \mathcal{F}, P)$ with “good” characteristics paying special attention to low-probability-high-impact events.

- **Utility models** apply a nonlinear transformation to the realizations of $G(z)$ (expected utility) or to the probability of events (rank dependent utility/distortion). Expected utility models optimize $\mathbb{E}[u(G(z))]$.

- **Probabilistic / chance constraints** impose prescribed probability on some events: $\mathbb{P}[G(z) \geq \eta]$.

- **Mean–risk models** optimize a composite objective of the expected performance and a scalar measure of undesirable realizations $\mathbb{E}[G(z)] - \varrho[G(z)]$ (risk/ deviation measures).

- **Stochastic ordering constraints** compare random outcomes using stochastic orders and random benchmarks.
1 Stochastic orders

2 Stochastic orders as constraints

3 Optimality conditions and duality
 • Relation to von Neumann utility theory
 • Relation to rank dependent utility
 • Relation to coherent measures of risk

4 Multivariate and Dynamic Orders

5 Numerical methods

6 Applications
 • Portfolio optimization
 • Beyond portfolio optimization
For $X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$

$$X \succeq_{\mathcal{F}} Y \iff \int_{\Omega} u(X(\omega)) P(d\omega) \geq \int_{\Omega} u(Y(\omega)) P(d\omega) \quad \forall u(\cdot) \in \mathcal{F}$$

Collection of functions \mathcal{F} is the generator of the order.

Generators

- $\mathcal{F}_1 = \{\text{nondecreasing functions } u : \mathbb{R} \to \mathbb{R}\}$ generates the usual stochastic order or first order stochastic dominance ($X \succeq_{(1)} Y$)
 Mann and Whitney (1947), Blackwell (1953), Lehmann (1955)

- $\mathcal{F}_2 = \{\text{nondecreasing concave } u : \mathbb{R} \to \mathbb{R}\}$ generates the second order stochastic dominance relation ($X \succeq_{(2)} Y$)
 Quirk and Saposnik (1962), Fishburn (1964), Hadar and Russell (1969)

- $\tilde{\mathcal{F}}_2 = \{\text{nondecreasing convex } u : \mathbb{R} \to \mathbb{R}\}$ generates the increasing convex order ($X \preceq_{\text{ic}} Y$) counterpart of stochastic dominance of second order when small values are preferred
For any $X \in L_k(\Omega, \mathcal{F}, P)(\Omega, \mathcal{F}, \mathbb{P})$, we define

Distribution Functions

\[
F_1(X; \eta) = \int_{-\infty}^{\eta} P_X(dt) = \mathbb{P}\{X \leq \eta\} \quad \text{for all } \eta \in \mathbb{R}
\]

\[
F_k(X; \eta) = \int_{-\infty}^{\eta} F_{k-1}(X; t) dt \quad \text{for all } \eta \in \mathbb{R}, \quad k = 2, 3, \ldots
\]

The function $F^{(k)}_X$ is nondecreasing for $k \geq 1$ and convex for $k \geq 2$.

Quantile function

\[
F_{-1}(X; p) = \inf\{\eta : F_1(X; \eta) \geq p\}, \quad p \in (0, 1)
\]

Survival function

\[
\overline{F}_1(X; \eta) = 1 - F_1(X; \eta) = \mathbb{P}\{X > \eta\}, \quad \eta \in \mathbb{R}
\]
The usual stochastic order

\[X \succeq_{(1)} Y \iff F_1(X; \eta) \leq F_1(Y; \eta) \quad \text{for all } \eta \in \mathbb{R} \]

\[\iff F_{(-1)}(X; p) \geq F_{(-1)}(Y; p) \quad \text{for all } 0 < p < 1. \]

\[\iff \overline{F}_1(X; \eta) \geq \overline{F}_1(Y; \eta) \quad \text{for all } \eta \in \mathbb{R}. \]
Second-Order Stochastic Dominance

\[F_2(X; \eta) = \int_{-\infty}^{\eta} F_1(X; t) \, dt = \mathbb{E}\left[\max(0, \eta - X) \right] \text{ for all } \eta \in \mathbb{R} \]

\[X \succeq_{(2)} Y \iff F_2(X; \eta) \leq F_2(Y; \eta) \text{ for all } \eta \in \mathbb{R} \]

\[\iff \mathbb{E}\left[\max(0, \eta - X) \right] \leq \mathbb{E}\left[\max(0, \eta - Y) \right] \text{ for all } \eta \in \mathbb{R} \]
Higher order relation

For any \(X \in \mathcal{L}_k(\Omega, \mathcal{F}, P)(\Omega, \mathcal{F}, \mathbb{P}) \), \(\|X\|_k = \left(\mathbb{E}(|X|^k) \right)^{\frac{1}{k}} \) and

\[
F_{(k+1)}(X, \eta) = \frac{1}{k!} \int_{-\infty}^{\eta} (\eta - t)^k P_X(dt) = \frac{1}{k!} \| \max(0, \eta - X) \|_k^k \quad \forall \eta \in \mathbb{R},
\]

kth degree Stochastic Dominance (kSD), \(k \geq 2 \)

\[
X \succeq_{(k)} Y \iff F_k(X, \eta) \leq F_k(Y, \eta) \quad \text{for all} \quad \eta \in \mathbb{R},
\]

\[
\| \max(0, \eta - X) \|_{k-1}^k \leq \| \max(0, \eta - Y) \|_{k-1}^{k-1}
\]

The generator

\(\mathcal{F}_k \) contains all functions \(u : \mathbb{R} \to \mathbb{R} \) such that a non-increasing, left-continuous, bounded function \(\varphi : \mathbb{R} \to \mathbb{R}_+ \) exists such that \(u^{(k-1)}(\eta) = (-1)^k \varphi(\eta) \) for a.a. \(\eta \in \mathbb{R} \).
Second Order Dominance and Inverse Distribution Functions

Absolute Lorenz function (Max Otto Lorenz, 1905)

\[
F_{(-2)}(X; p) = \int_0^p F_{(-1)}(X; t) \, dt \quad \text{for } 0 < p \leq 1,
\]

\[F_{(-2)}(X; 0) = 0 \quad \text{and} \quad F_{(-2)}(X; p) = +\infty \quad \text{for } p \notin [0, 1].\]

Fenchel conjugate function of \(F\):

\[F^*(p) = \sup_u \{pu - F(u)\}\]

Lorenz function and Expected shortfall are Fenchel conjugates

\[F_{(-2)}(X; \cdot) = [F_2(X; \cdot)]^* \quad \text{and} \quad F_2(X; \cdot) = [F_{(-2)}(X; \cdot)]^*\]

Ogryczak - Ruszczyński (2002)

Second order dominance \(\equiv\) Relation between Lorenz function

\[X \succeq_{(2)} Y \iff F_{(-2)}(X; p) \geq F_{(-2)}(Y; p) \quad \text{for all } 0 \leq p \leq 1.\]
Characterization of Stochastic Dominance by Lorenz Functions

\[X \succeq_2 Y \iff F_{(-2)}(X; p) \geq F_{(-2)}(Y; p) \quad \text{for all} \quad 0 \leq p \leq 1. \]
Preference to small values: Increasing convex order

Characterization via integrated survival function

For $X, Y \in \mathcal{L}_p(\Omega, \mathcal{F}, P)$, X is smaller than Y ($X \preceq_{ic} Y$) if and only if

$$
\int_{\eta}^{\infty} P(X > t) \, dt \leq \int_{\eta}^{\infty} P(Y > t) \, dt \quad \text{for all } \eta \in \mathbb{R}.
$$

The excess function and its Fenchel conjugate

$$
H(Z, \eta) = \int_{\eta}^{\infty} F(Z, t) \, dt = \mathbb{E}(Z - \eta) +
$$

$$
L(Z, q) = -\int_{1+q}^{1} F(-1)(Z, t) \, dt \quad \text{for } -1 \leq q < 0,
$$

$L(Z, 0) = 0, L(Z, q) = \infty$ for $q \notin [-1, 0]$

Increasing convex order vs. Second order dominance

$$
X \preceq_{ic} Y \iff -X \succeq_{(2)} -Y.
$$
\(\mathcal{W}_1 \) contains all continuous nondecreasing functions \(w : [0, 1] \to \mathbb{R} \).
\(\mathcal{W}_2 \subset \mathcal{W}_1 \) contains all concave subdifferentiable at 0 functions.

Theorem [DD, A. Ruszczyński, 2006]

(i) For all random variables \(X, Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P) \) the relation \(X \preceq_{(1)} Y \) holds if and only if for all \(w \in \mathcal{W}_1 \)

\[
\int_0^1 F_{(-1)}(X; p) \, dw(p) \geq \int_0^1 F_{(-1)}(Y; p) \, dw(p) \quad (1)
\]

(ii) \(X \succeq_{(2)} Y \) holds if and only if (1) is satisfied for all \(w \in \mathcal{W}_2 \).

Corollary

\(X \preceq_{ic} Y \) holds if and only if (1) is satisfied for all convex functions \(w \) which are subdifferentiable at zero.

Quiggin (1982), Schmeidler (1986–89), Yaari (1987)
Acceptance Sets

For all \(k \geq 1 \), \(Y \) - benchmark outcome in \(\mathcal{L}_{k-1}(\Omega, \mathcal{F}, P) \), \([a, b] \subseteq \mathbb{R} \).

Acceptance sets \(A_k(Y; [a, b]) = \{ X \in \mathcal{L}_{k-1} : X \succeq_{(k)} Y \text{ in } [a, b] \} \)

Theorem

The set \(A_k(Y; [a, b]) \) is **convex and closed** for all \([a, b] \), all \(Y \), and \(k \geq 2 \). Its recession cone has the form

\[
A_k^\infty(Y; [a, b]) = \{ H \in \mathcal{L}_{k-1}(\Omega, \mathcal{F}, P) : H \geq 0 \text{ a.s. on } [a, b] \}
\]

\(A_1(Y; [a, b]) \) is **closed** and \(A_k(Y; [a, b]) \subseteq A_{k+1}(Y; [a, b]) \quad \forall k \geq 1 \). \(A_k(Y; [a, b]) \) is a cone pointed at \(Y \) if and only if \(Y \) is a constant in \([a, b] \).

Theorem

If \((\Omega, \mathcal{F}, P)\) is atomless, then \(A_2(Y; \mathbb{R}) = \overline{\text{co}} A_1(Y; \mathbb{R}) \) if \(\Omega = \{1..N\} \), and \(P[k] = 1/N \), then \(A_2(Y; \mathbb{R}) = \text{co} A_1(Y; \mathbb{R}) \)

The result is not true for general probability spaces
Dominance Relation in Optimization

Introduced by Dentcheva and Ruszczyński in 2003

\[
\min f(z)
\]
\[\begin{align*}
(P) & \quad \text{s.t. } G_i(z) \succeq_{(k_i)} Y_i & i = 1, \ldots, m, \\
& \quad z \in Z.
\end{align*}\]

\(Y_i\) - benchmark random outcome

\(Z\) - convex subset of a separable Banach space \(\mathcal{H}\),
\(G_i\) – continuous operators from \(\mathcal{H}\) to the space \(\mathcal{L}_{k_i-1}(\Omega, \mathcal{F}, P; \mathbb{R})\),
\(k_i \geq 1\), \(f\) – continuous function defined on \(\mathcal{H}\).

The stochastic order constraints reflect risk aversion

- \(G_i(z)\) is preferred over \(Y_i\) by all risk-averse decision makers with utility functions in the generator \(\mathcal{F}_{k_i}\);
- Easier consensus on a benchmark rather than a utility function;
- Data of a benchmark is readily available.
Assets $j = 1, \ldots, n$ with random return rates R_j
Reference return rate Y (e.g. index, existing portfolio, etc.)
Decision variables z_j, $j = 1, \ldots, n$, Z -polyhedral set
Portfolio return rate $R(z) = \sum_{j=1}^{n} z_j R_j$

$$\max \ f(z)$$

s.t. $\sum_{j=1}^{n} z_j R_j \succeq Y$

$z \in Z$

$$f(x) = \mathbb{E}[R(x)] \text{ or } f(x) = -\varrho[R(x)]: \text{ measure of risk.}$$
All Statements are Equivalent

\[\sum_{j=1}^{n} z_j R_j \succeq_{(2)} Y \]

\[F_{(-2)} \left(\sum_{j=1}^{n} z_j R_j ; p \right) \geq F_{(-2)} (Y ; p) \text{ for all } p \in [0, 1] \]

continuum of CVaR constraints for every risk level \(p \in [0, 1] \)

\[\mathbb{E} u \left(\sum_{j=1}^{n} z_j R_j \right) \geq \mathbb{E} u (Y) \]

for all concave nondecreasing functions \(u \) (von Neuman-Morgenstern utility)

\[\int_{0}^{1} F_{(-1)} \left(\sum_{j=1}^{n} z_j R_j ; p \right) d w(p) \geq \int_{0}^{1} F_{(-1)} (Y ; p) d w(p) \]

for all concave nondecreasing functions \(w \) (rank dependent utility)
Second Order Dominance Constraints

Given $Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P)$ - benchmark random outcome

Primal Stochastic Dominance Constraints

$$\max f(z)$$
subject to $F_2(G(z); \eta) \leq F_2(Y; \eta)$, $\forall \eta \in [a, b]$, $z \in Z$

Inverse Stochastic Dominance Constraints

$$\max f(z)$$
subject to $F_2(G(z); p) \geq F_2(Y; p)$, $\forall p \in [\alpha, \beta]$, $z \in Z$

Z is a closed subset of a Banach space \mathcal{X}, $[\alpha, \beta] \subset (0, 1)$, $[a, b] \subset \mathbb{R}$

$G : \mathcal{X} \rightarrow \mathcal{L}_1(\Omega, \mathcal{F}, P)$ is continuous and for P-almost all $\omega \in \Omega$ the functions $[G(\cdot)](\omega)$ are concave and continuous

$f : \mathcal{X} \rightarrow \mathbb{R}$ is concave and continuous
The Lagrangian-like functional $L : \mathcal{X} \times \mathcal{F}_2([a, b]) \to \mathbb{R}$

$$L(z, u) := f(z) + \mathbb{E}[u(G(z)) - u(Y)]$$

$\mathcal{F}_2([a, b])$ modified generator.

Uniform Dominance Condition (UDC) for problem (\mathcal{P}_2)
A point $\tilde{z} \in Z$ exists such that
$$\inf_{\eta \in [a, b]} \{ F_2(Y; \eta) - F_2(G(\tilde{z}); \eta) \} > 0.$$

Theorem Assume UDC. If \hat{z} is an optimal solution of (\mathcal{P}_2) then $\hat{u} \in \mathcal{F}_2([a, b])$ exists:

1. $$L(\hat{z}, \hat{u}) = \max_{z \in Z} L(z, \hat{u})$$ (2)
2. $$\mathbb{E}[\hat{u}(G(\hat{z}))] = \mathbb{E}[\hat{u}(Y)]$$ (3)

If for some $\hat{u} \in \mathcal{F}_2([a, b])$ an optimal solution \hat{z} of (2) satisfies the dominance constraints and (3), then \hat{z} solves (\mathcal{P}_2).
Lagrangian-like functional $\Phi : \mathcal{Z} \times \mathcal{W}([\alpha, \beta]) \rightarrow \mathbb{R}$

$$\Phi(z, w) = f(z) + \int_{0}^{1} F_{(-1)}(G(z); p) \, dw(p) - \int_{0}^{1} F_{(-1)}(Y; p) \, dw(p)$$

$\mathcal{W}([\alpha, \beta])$ is the modified generator of the relaxed order

Uniform inverse dominance condition (UIDC) for (P$_{-2}$)

$\exists \tilde{z} \in Z$ such that $\inf_{p \in [\alpha, \beta]} \left\{ F_{(-2)}(G(\tilde{z}); p) - F_{(-2)}(Y; p) \right\} > 0.$

Theorem

Assume UIDC. If \hat{z} is a solution of (P$_{-2}$), then $\hat{w} \in \mathcal{W}([\alpha, \beta])$ exists:

$$\Phi(\hat{z}, \hat{w}) = \max_{z \in Z} \Phi(z, \hat{w})$$ (4)

$$\int_{0}^{1} F_{(-1)}(G(\hat{z}); p) \, d\hat{w}(p) = \int_{0}^{1} F_{(-1)}(Y; p) \, d\hat{w}(p)$$ (5)

If for some $\hat{w} \in \mathcal{W}([\alpha, \beta])$ and a solution \hat{z} of (4) the dominance constraint and (5) are satisfied, then \hat{z} is a solution of (P$_{-2}$).
Duality Relations to Utility Theories

The Dual Functionals

\[D(u) = \sup_{z \in Z} L(z, u) \quad \psi(w) = \sup_{z \in Z} \Phi(z, w) \]

The Dual Problems

\[(\mathcal{D}_2) \quad \min_{u \in \mathcal{U}_2([a, b])} D(u) \quad (\mathcal{D}'_2) \quad \min_{w \in \mathcal{W}([\alpha, \beta])} \psi(w). \]

Theorem

Under UDC/UIDC, if problem \((\mathcal{P}_2)\) resp. \((\mathcal{P}'_2)\) has an optimal solution, then the corresponding dual problem has an optimal solution and the same optimal value. The optimal solutions of the dual problem \((\mathcal{D}_2)\) are the utility functions \(\hat{u} \in \mathcal{U}_2([a, b])\) satisfying (2)–(3) for an optimal solution \(\hat{z}\) of problem \((\mathcal{P}_2)\). The optimal solutions of \((\mathcal{D}'_2)\) are the rank dependent utility functions \(\hat{w} \in \mathcal{W}([\alpha, \beta])\) satisfying (4)–(5) for an optimal solution \(\hat{z}\) of problem \((\mathcal{P}'_2)\).
A coherent measure of risk is a functional $\varrho : \mathcal{L}_1(\Omega, \mathcal{F}, P) \rightarrow \overline{\mathbb{R}}$ satisfying the axioms:

- **Convexity:** $\varrho(\alpha X + (1 - \alpha) Y) \leq \alpha \varrho(X) + (1 - \alpha) \varrho(Y)$ for all $X, Y \in \mathcal{L}_1$, $\forall \alpha \in [0, 1]$.
- **Monotonicity:** If $Y(\omega) \geq X(\omega)$ $\forall \omega \in \Omega$, then $\varrho(Y) \leq \varrho(X)$.
- **Translation Equivariance:** $\varrho(X + a) = \varrho(X) - a$ $\forall a \in \mathbb{R}$.
- **Positive homogeneity:** $\varrho(tX) = t\varrho(X)$ $\forall t > 0$.

$$\max_{z, \sigma} \{f(z) - \lambda \sigma : z \in Z, \ G(z) + \sigma \succeq Y\}$$

$\lambda > 0$ is a tradeoff between $f(\cdot)$ and the error in dominating.

Proposition

The optimal value of σ is a coherent measure of risk.
Mean-risk models as Lagrangian Relaxation

Kusuoka representation

If Ω is atomless, then for every law invariant, finite-valued coherent measure of risk on $L_\infty(\Omega, \mathcal{F}, P)$ a convex set \mathcal{M}_ϱ of probability measures on $(0, 1]$ exists such that

$$\varrho(X) = \sup_{\mu \in \mathcal{M}_\varrho} \left(- \int_0^1 \frac{1}{p} F(-2)(X; p) \mu(dp) \right) \quad \forall X \in L_\infty.$$

Theorem

Under the UIDC, if \hat{z} is an optimal solution of (\mathcal{P}_{-2}), then a law-invariant coherent risk measure $\hat{\varrho}$ and $\kappa \geq 0$ exist such that $G(\hat{z})$ is a solution of the mean-risk problem

$$\max_{z \in Z} \{ f(z) - \kappa \hat{\varrho}(G(z)) \} \quad \text{and} \quad \kappa \hat{\varrho}(G(\hat{z})) = \kappa \hat{\varrho}(Y).$$

Moreover, \mathcal{M}_ϱ is singleton.

If the dominance constraint is active, then $\hat{\varrho}(G(\hat{z})) = \hat{\varrho}(Y)$.
The Implied Dominance Constraint

Given the problem

\[\text{(R)} \quad \max_{X \in C} \{ f(X) - \kappa \varrho(X) \} \]

\(\varrho(\cdot) \) a coherent law invariant measure of risk and \(\kappa > 0 \)

\(\text{rca}([0, 1]) \) - space of regular countably additive measures on \([0, 1]\).

Theorem If \(M_\varrho \) is compact* in \(\text{rca}([0, 1]) \) and \(\hat{X} \) is a solution of problem \(\text{(R)} \), then \(\exists \hat{\mu} \in M \) such that

\[\varrho(\hat{X}) = -\int_0^1 \frac{1}{p} F_{(-2)}(\hat{X}; p) \hat{\mu}(dt), \]

and for every \(Y \in \mathcal{L}_1(\Omega, \mathcal{F}, P) \) satisfying the conditions

\[F_{(-2)}(Y; t) \leq F_{(-2)}(\hat{X}; t), \quad \text{for all} \quad t \in [0, 1], \]

\[F_{(-2)}(Y; t) = F_{(-2)}(\hat{X}; t), \quad \text{for all} \quad t \in \supp(\hat{\mu}), \]

the point \(\hat{X} \) is also a solution of problem \(\text{(P}_{-2}) \) with \([\alpha, \beta] = [0, 1]\).
Assets $j = 1, \ldots, n$, $n = 719$ with random returns R_j
Decision variables z_j, $j = 1, \ldots, n$, Z-simplex
Portfolio return $G(z) = \sum_{j=1}^{N} z_j R_j$
Reference return Y is the Standard and Poor 500 index.

$$\max \mathbb{E}[\sum_{j=1}^{n} z_j R_j]$$

subject to $\sum_{j=1}^{n} z_j R_j \succeq_{(2)} Y$
$z \in Z$

We use 248 realizations of the joint returns

The optimal portfolio

7 stocks with weights 10.98%, 7.08%, 21.79%, 13.19%, 36.51%, 4.41% 6.04%, correspondingly; the expected return is 0.64% vs. -0.0359% of S&P 500
Implied Expected Utility

Darinka Dentcheva
Optimization and Stochastic Orders
Implied Rank Dependent Utility Function

Darinka Dentcheva Optimization and Stochastic Orders
\[\varrho(X) = 0.1069 \text{AVaR}_{0.1772}(X) + 0.014 \text{AVaR}_{0.3102}(X) + 0.0274 \text{AVaR}_{0.3636}(X) \\
+ 0.0577 \text{AVaR}_{0.4093}(X) + 0.3073 \text{AVaR}_{0.4594}(X) + 0.2935 \text{AVaR}_{0.4967}(X) \\
+ 0.1077 \text{AVaR}_{0.5081}(X) + 0.0576 \text{AVaR}_{0.557}(X) + 0.0213 \text{AVaR}_{0.5647}(X) \\
+ 0.0066 \text{AVaR}_{0.575}(X) \]
Consider $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ in $\mathcal{L}_1^m(\Omega, \mathcal{F}, P)$.

Coordinate Order

$X \succeq^{\text{sep}}_{(2)} Y \iff X_t \succeq^{(2)} Y_t, \ t = 1, \ldots, m$

Generator \mathcal{F}_s all functions $u(X) = \sum_{i=1}^m u_i(X_i)$ with concave nondecreasing $u_i : \mathbb{R} \rightarrow \mathbb{R}$. Our earlier analysis covers this case. Ignores temporal structure and dependency.

Increasing Convex Order

$X \succeq_{(\text{icx})} Y \iff \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)] \ \forall \ u \in \mathcal{F}$

Generator $\mathcal{F}_a -$ all concave nondecreasing functions $u : \mathbb{R}^m \rightarrow \mathbb{R}$

Hard to treat analytically, the generator is too rich.

Proposed approach

Define the multivariate order via a family of univariate orders.
A random vector $X \in \mathcal{L}_1^m$ dominates a random vector $Y \in \mathcal{L}_1^m$ with respect to the linear second-order dominance $(X \succeq_{\text{lin}}^{(2)} Y)$ if $c^\top X \succeq_{\text{lin}}^{(2)} c^\top Y$ for all $c \in S$, where $S = \{ c \in \mathbb{R}_+^m : \|c\|_1 = 1 \}$.

If the set S contains non-increasing sequences, then $\succeq_{\text{lin}}^{(2)}$ can be used to compare sequences.

The linear order $\succeq_{\text{lin}}^{(2)}$ implies the coordinate order $X_i \succeq_{(2)} Y_i$, $i = 1, \ldots, m$ but is not equivalent to it.

Other definitions: A. Müller, D. Stoyan, Homem-de-Mello and Mehrotra: S is a polyhedron, or a compact convex set.
The set \mathcal{D} contains all mappings $Q : S \to \mathcal{F}$ such that $(c, x) \to [Q(c)](c^T x)$ is Lebesgue measurable on $S \times \mathbb{R}^m$.

$\mathcal{M}(S)$ is the space of regular countably additive measures on S with finite variation;

$\mathcal{M}_+(S)$ is its subset of nonnegative measures.

With every mapping $Q \in \mathcal{D}$ and every finite measure $\mu \in \mathcal{M}_+(S)$ we associate a function $\varphi_{Q, \mu} : \mathbb{R}^m \to \mathbb{R}$ as follows:

$$\varphi_{Q, \mu}(x) = \int_S [Q(c)](c^T x) \mu(dc).$$

We define the class of functions $\mathcal{F}_m = \{\varphi_{Q, \mu} : Q \in \mathcal{D}, \mu \in \mathcal{M}_+\}$.

Theorem

For each $X, Y \in \mathcal{L}_1^m$ the relation $X \succeq_{\text{lin}}^{(2)} Y$ is equivalent to

$$\mathbb{E}[\varphi(X)] \geq \mathbb{E}[\varphi(Y)] \quad \text{for all } \varphi \in \mathcal{F}_m.$$
Control problem with order constraint and its risk-neutral equivalent

\[
\max \sum_{t=1}^{T} \mathbb{E}[G_t(s_t, v_t)] + \mathbb{E}[G_{T+1}(s_{T+1})]
\]

\((\mathcal{C})\)

\[s_{t+1} = A_t s_t + B_t v_t + e_t, \quad t = 1, \ldots, T,\]

\[(G_1(s_1, v_1), \ldots, G_1(s_T, v_T), G_{T+1}(s_{T+1})) \succeq_{\text{dis}}^{(2)} (Y_1, \ldots, Y_T, Y_{T+1})\]

\[v_t \in V_t \text{ a.s., } \quad t = 1, \ldots, T.\]

Theorem

If \((\hat{s}, \hat{v})\) is an optimal solution of problem \((\mathcal{C})\), then a random discount sequence \(\xi_t \in \mathcal{L}_\infty(\Omega, \mathcal{F}_t, P), t = 1, \ldots, T + 1\), exists such that \((\hat{s}, \hat{v})\) is an optimal solution of the problem

\[
\max \sum_{t=1}^{T} \mathbb{E}[(1 + \xi_t)G_t(s_t, v_t)] + \mathbb{E}[(1 + \xi_{T+1})G_{T+1}(s_{T+1})]
\]

\[s.t. \quad s_{t+1} = A_t s_t + B_t v_t + e_t, \quad t = 1, \ldots, T,\]

\[v_t \in V_t \text{ a.s., } \quad t = 1, \ldots, T.\]

Challenge: The decisions are not time-consistent.
Two-stage stochastic optimization problems with order constraint on the recourse

First Stage Problem:
\[
\min \limits_x f(x) + \mathbb{E}[\mathcal{Q}(x, \xi)] \\
\text{s.t. } \mathcal{Q}(x, \xi) \preceq_{\text{ic}} Z, \quad x \in \mathcal{D}.
\]

where \(\mathcal{Q}(x, \xi) \) is the optimal value of the second stage problem

Second Stage Problem:
\[
\mathcal{Q}(x, \xi) = \min \limits_y \{ q^\top y : Tx + Wy = h, \ y \in \mathcal{Y} \}.
\]

\(\mathcal{D} \subset \mathbb{R}^n \) and \(\mathcal{Y} \subset \mathbb{R}^m \) are closed convex sets, \(f : \mathbb{R}^n \to \mathbb{R} \) is a convex function, \(\xi = (q, W, T, h) \); \(q, T, h \) are random.

Two-stage stochastic optimization problems with multivariate-order constraint

Two-stage problem:

\[
\min_x f(x) + \mathbb{E}[\mathcal{D}(x, \xi)] \\
\text{s.t. } x \in \mathcal{D}.
\]

\[
\mathcal{D}(x, \xi) = \min_y \{q^\top y : Tx + Wy = h, \ y \in \mathcal{Y} \}
\]

\[
g(y) \succeq Z.
\]

Here \(g : \mathbb{R}^m \to \mathbb{R}^d\) is a continuous mapping and \(Z\) is \(\ell\)-dimensional random vector.

Motivation

Robotics: Control of robots’ positions and the communication in a multi-hop fashion within the network and destination centers.

Portfolio optimization: Control of return rate and additional performance measures (e.g., drawdown).
Numerical Methods

- **Large scale convex optimization methods** for second order dominance constraints: applicable only to small problems

- **Dual methods** for SSD constraints (DD, Ruszczyński, 2005); (Rudolf, Ruszczyński 2006, Luedtke 2008).

- **Subgradient Based Approximation Methods** for SSD constraints with linear $G(\cdot)$ (Rudolf, Ruszczyński, 2006; Fabian, Mitra, and Roman, 2008)

- **Combinatorial methods** for FSD constraints (Rudolf, Noyan, Ruszczyński 2006) based on second order stochastic dominance relaxation ($\{X : X \succeq^{(2)} Y\} = \overline{co}\{X : X \succeq^{(1)} Y\}$)

- **Methods for two-stage problems with dominance constraints on the recourse** (Schultz, Neise, Gollmer, Drapkin; DD and G. Martinez, 2011)

- **Methods for multivariate linear dominance constraints** (Homem-de-Mello, Mehrotra, 2009; Hu, Homem-de-Mello, and Mehrotra 2010, Armbruster and Luedtke 2010, DD and Wolfhagen 2013)

- **Subgradient methods based on quantile functions and conditional expectations** (DD, Ruszczyński, 2010)

- **Sample average approximation methods** (Sun, Xu and Wang, 2011)
Extensions and Further Research Directions

- **Non-convex problems** Optimality conditions for problems with FSD constraints and problems with higher order dominance constraints with non-convex functions (DD, A Ruszczyński 2004, 2007)

- **Stochastic dominance efficiency in multi-objective optimization** and its relations to dominance constraints (G. Mitra, C. Fabian, K. Darby-Dowman, D. Roman, 2006, 2009)

- **Stability and sensitivity analysis, asymptotic behavior** (DD, R. Henrion, A Ruszczyński, 2007; Y. Liu, H. Xu, 2010; DD and W. Römisch 2011)

- **Semi-infinite composite optimization** (DD, A Ruszczyński 2007)

- **Robust Dominance Relation** (DD, A Ruszczyński, 2010)
Applications

- **Finance**: portfolio optimization
- **Electricity markets**: portfolio of contracts and/or acceptability of contracts
- **Inverse models and forecasting**: Compare the forecast errors via stochastic dominance and design data collection for model calibration
- **Network design**: assign capacity to optimize network throughput
- **Robotics**: control of position and communication of robots
- **Medicine**: radiation therapy designs