Supermartingales as Radon-Nikodym densities, Novikov’s and Kazamaki’s criteria, and the distribution of explosion times

Johannes Ruf

Oxford-Man Institute of Quantitative Finance

This presentation is based on joint papers with Nicolas Perkowski, Martin Larsson, and Ioannis Karatzas

Financial/Actuarial Mathematics Seminar
University of Michigan
October 15, 2013
This presentation has three parts

1. **Supermartingales as Radon-Nikodym densities.**
2. Canonical proof that certain conditions of the form
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}[H_{\sigma}] < \infty \]
 are sufficient for the uniform integrability / martingale property of a nonnegative local martingale \(Z \).
3. Computation of the distribution of the explosion time \(S \) of the diffusion
 \[dX(t) = s(X(t)) (dW(t) + b(X(t))dt), \quad X(0) = \xi. \]

Unifying theme: A one-to-one correspondence of
- the lack of martingale property of a nonnegative local martingale;
- a positive probability of explosions of a related process.
(due to McKean and Föllmer)
This presentation has three parts

1. Supermartingales as Radon-Nikodym densities.
2. Canonical proof that certain conditions of the form
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}[H_{\sigma}] < \infty \]
 are sufficient for the uniform integrability / martingale property of a nonnegative local martingale \(Z \).
3. Computation of the distribution of the explosion time \(S \) of the diffusion
 \[dX(t) = s(X(t)) \left(dW(t) + b(X(t)) dt \right), \quad X(0) = \xi. \]

Unifying theme: A one-to-one correspondence of
- the lack of martingale property of a nonnegative local martingale;
- a positive probability of explosions of a related process.
(due to McKean and Föllmer)
This presentation has three parts

1. Supermartingales as Radon-Nikodym densities.
2. Canonical proof that certain conditions of the form
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}[H_{\sigma}] < \infty \]
 are sufficient for the uniform integrability / martingale property of a nonnegative local martingale \(Z \).
3. Computation of the distribution of the explosion time \(S \) of the diffusion
 \[dX(t) = s(X(t))(dW(t) + b(X(t))dt), \quad X(0) = \xi. \]

Unifying theme: A one-to-one correspondence of
- the lack of martingale property of a nonnegative local martingale;
- a positive probability of explosions of a related process.
(due to McKean and Föllmer)
This presentation has three parts

1. Supermartingales as Radon-Nikodym densities.
2. Canonical proof that certain conditions of the form
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}[H_\sigma] < \infty \]
 are sufficient for the uniform integrability / martingale property of a nonnegative local martingale \(Z \).
3. Computation of the distribution of the explosion time \(S \) of the diffusion
 \[dX(t) = s(X(t))(dW(t) + b(X(t))dt), \quad X(0) = \xi. \]

Unifying theme: A one-to-one correspondence of
- the lack of martingale property of a nonnegative local martingale;
- a positive probability of explosions of a related process.
 (due to McKean and Föllmer)
This presentation has three parts

1. Supermartingales as Radon-Nikodym densities.
2. Canonical proof that certain conditions of the form
 \[
 \sup_{\sigma \in \mathcal{T}} \mathbb{E}[H_\sigma] < \infty
 \]
 are sufficient for the uniform integrability / martingale property of a nonnegative local martingale \(Z \).
3. Computation of the distribution of the explosion time \(S \) of the diffusion
 \[
 dX(t) = s(X(t)) \left(dW(t) + b(X(t)) dt \right), \quad X(0) = \xi.
 \]

Unifying theme: A one-to-one correspondence of
- the lack of martingale property of a nonnegative local martingale;
- a positive probability of explosions of a related process.
 (due to McKean and Föllmer)
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$;
 - nonnegative, right-continuous P–supermartingale $Z = (Z_t)_{t \geq 0}$ with $E_P[Z_0] = 1$.

2. “Can we somehow assign a measure Q to Z, in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of Z (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - Nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - Nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\)
 with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - Nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - **Duality**;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)\);
 - nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t\geq 0}\) with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Supermartingales as Radon-Nikodym densities

1. Given:
 - Filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)\);
 - nonnegative, right-continuous \(P\)-supermartingale \(Z = (Z_t)_{t \geq 0}\)
 with \(E_P[Z_0] = 1\).

2. “Can we somehow assign a measure \(Q\) to \(Z\), in the sense of a change of measure?”

3. Possible applications:
 - Deriving certain properties of \(Z\) (martingale property, decompositions, ...);
 - Duality;
 - Filtration shrinkage;
 - Financial mathematics: study of arbitrage opportunities.
Constructions of measures associated to Z

- Construction of finitely additive measure on $(\Omega \times [0, \infty], \mathcal{A})$, where $\mathcal{A} \subset \mathcal{P}$ is a suitable algebra, and where \mathcal{P} denotes the predictable sigma algebra. (Doléans; Metivier & Pellaumail).

- Under certain topological assumptions on the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, construction of countably additive measure on $(\Omega \times [0, \infty], \mathcal{P})$ (3 different constructions: Fölmer; Meyer; Stricker). If Z is local martingale then construction on (Ω, \mathcal{F}).

- If Z is the pointwise limit of a family of uniformly integrable martingales, then existence of a finitely additive measure on (Ω, \mathcal{F}). (Cvitanić & Schachermayer & Wang; Karatzas & Žitković).
Constructions of measures associated to Z

- Construction of finitely additive measure on $(\Omega \times [0, \infty], \mathcal{A})$, where $\mathcal{A} \subset \mathcal{P}$ is a suitable algebra, and where \mathcal{P} denotes the predictable sigma algebra. (Doléans; Metivier & Pellaumail).
- Under certain topological assumptions on the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, construction of countably additive measure on $(\Omega \times [0, \infty], \mathcal{P})$ (3 different constructions: Föllmer; Meyer; Stricker). If Z is local martingale then construction on (Ω, \mathcal{F}).
- If Z is the pointwise limit of a family of uniformly integrable martingales, then existence of a finitely additive measure on (Ω, \mathcal{F}). (Cvitanić & Schachermayer & Wang; Karatzas & Žitković).
Constructions of measures associated to Z

- Construction of finitely additive measure on $(\Omega \times [0, \infty], \mathcal{A})$, where $\mathcal{A} \subset \mathcal{P}$ is a suitable algebra, and where \mathcal{P} denotes the predictable sigma algebra. (Doléans; Metivier & Pellaumail).

- Under certain topological assumptions on the filtered space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, construction of countably additive measure on $(\Omega \times [0, \infty], \mathcal{P})$ (3 different constructions: Föllmer; Meyer; Stricker). If Z is local martingale then construction on (Ω, \mathcal{F}).

- If Z is the pointwise limit of a family of uniformly integrable martingales, then existence of a finitely additive measure on (Ω, \mathcal{F}). (Cvitanić & Schachermayer & Wang; Karatzas & Žitković).
Definitions: countably additive case

If Q and τ are a probability measure and a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, then (Q, τ) is called a Föllmer pair for Z if

$$P[\tau = \infty] = 1 \quad \text{and} \quad Q[A \cap \{\rho < \tau\}] = \mathbb{E}_P[Z_\rho 1_A] \quad \text{for all } A \in \mathcal{F}_\rho \text{ and finite s.t. } \rho.$$

(1)

We also call Q a Föllmer (countably additive) measure for (Z, τ), or, slightly abusing notation, a Föllmer (countably additive) measure for Z.

- Inspired by Kunita-Yoeurp decomposition.
- Föllmer pair for Z is unique if given Q, \tilde{Q} and τ, $\tilde{\tau}$ such that (Q, τ) and $(\tilde{Q}, \tilde{\tau})$ both satisfy (1), we have $Q = \tilde{Q}$ and $Q[\tau = \tilde{\tau}] = 1$.
- If τ is a stopping time, then Föllmer (c.a.) measure for (Z, τ) is unique if, given Q, \tilde{Q} such that (Q, τ) and (\tilde{Q}, τ) both satisfy (1), we have $Q = \tilde{Q}$.
Definitions: countably additive case

If \(Q \) and \(\tau \) are a probability measure and a stopping time on \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})\), then \((Q, \tau)\) is called a *Föllmer pair* for \(Z \) if

\[
P[\tau = \infty] = 1 \quad \text{and} \quad Q[A \cap \{ \rho < \tau \}] = \mathbb{E}_P[Z_\rho 1_A] \quad \text{for all} \ A \in \mathcal{F}_\rho \quad \text{and finite} \ s.t. \ \rho.
\]

We also call \(Q \) a *Föllmer (countably additive) measure* for \((Z, \tau)\), or, slightly abusing notation, a *Föllmer (countably additive) measure* for \(Z \).

- **Inspired by Kunita-Yoeurp decomposition.**
- Föllmer pair for \(Z \) is *unique* if given \(Q, \tilde{Q} \) and \(\tau, \tilde{\tau} \) such that \((Q, \tau)\) and \((\tilde{Q}, \tilde{\tau})\) both satisfy (1), we have \(Q = \tilde{Q} \) and \(Q[\tau = \tilde{\tau}] = 1 \).
- If \(\tau \) is a stopping time, then Föllmer (c.a.) measure for \((Z, \tau)\) is *unique* if, given \(Q, \tilde{Q} \) such that \((Q, \tau)\) and \((\tilde{Q}, \tau)\) both satisfy (1), we have \(Q = \tilde{Q} \).
Definitions: countably additive case

If Q and τ are a probability measure and a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, then (Q, τ) is called a Föllmer pair for Z if

$$P[\tau = \infty] = 1 \quad \text{and} \quad Q[A \cap \{\rho < \tau\}] = \mathbb{E}_P[Z_\rho 1_A] \quad \text{for all } A \in \mathcal{F}_\rho \text{ and finite s.t. } \rho.$$ \hspace{1cm} (1)

We also call Q a Föllmer (countably additive) measure for (Z, τ), or, slightly abusing notation, a Föllmer (countably additive) measure for Z.

- Inspired by Kunita-Yoeurp decomposition.
- Föllmer pair for Z is unique if given Q, \tilde{Q} and τ, $\tilde{\tau}$ such that (Q, τ) and $(\tilde{Q}, \tilde{\tau})$ both satisfy (1), we have $Q = \tilde{Q}$ and $Q[\tau = \tilde{\tau}] = 1$.
- If τ is a stopping time, then Föllmer (c.a.) measure for (Z, τ) is unique if, given Q, \tilde{Q} such that (Q, τ) and (\tilde{Q}, τ) both satisfy (1), we have $Q = \tilde{Q}$.
Definitions: countably additive case

If Q and τ are a probability measure and a stopping time on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$, then (Q, τ) is called a Föllmer pair for Z if

$$P[\tau = \infty] = 1 \quad \text{and} \quad Q[A \cap \{\rho < \tau\}] = \mathbb{E}_P[Z_\rho \mathbf{1}_A] \quad \text{for all } A \in \mathcal{F}_\rho \text{ and finite s.t. } \rho.$$

(1)

We also call Q a Föllmer (countably additive) measure for (Z, τ), or, slightly abusing notation, a Föllmer (countably additive) measure for Z.

- Inspired by Kunita-Yoeurp decomposition.
- Föllmer pair for Z is unique if given Q, \tilde{Q} and $\tau, \tilde{\tau}$ such that (Q, τ) and $(\tilde{Q}, \tilde{\tau})$ both satisfy (1), we have $Q = \tilde{Q}$ and $Q[\tau = \tilde{\tau}] = 1$.
- If τ is a stopping time, then Föllmer (c.a.) measure for (Z, τ) is unique if, given Q, \tilde{Q} such that (Q, τ) and (\tilde{Q}, τ) both satisfy (1), we have $Q = \tilde{Q}$.
Definitions: finitely additive case

- $\text{ba}_1(\Omega, \mathcal{F}, P)$: space of finitely additive set functions Q on \mathcal{F}, weakly absolutely continuous with respect to P, with $Q[\Omega] = 1$.
- Q can be uniquely decomposed as $Q = Q^r + Q^s$. Here, Q^r is sigma-additive and Q^s is purely finitely additive.
- $\text{ba}(\Omega, \mathcal{F}, P)$ can be identified with the dual space $L^\infty(\Omega, \mathcal{F}, P)^*$ of $L^\infty(\Omega, \mathcal{F}, P)$.

A weakly absolutely continuous, finitely additive probability measure $Q \in \text{ba}_1(\Omega, \mathcal{F}, P)$, such that

$$(Q|\mathcal{F}_\rho)'[A] = \mathbb{E}_P[Z_\rho 1_A] \quad \text{for all } A \in \mathcal{F}_\rho \text{ and finite s.t. } \rho,$$

is called \textit{Föllmer finitely additive measure} for Z.
Definitions: finitely additive case

- $\text{ba}_1(\Omega, \mathcal{F}, P)$: space of finitely additive set functions Q on \mathcal{F}, weakly absolutely continuous with respect to P, with $Q[\Omega] = 1$.

- Q can be uniquely decomposed as $Q = Q^r + Q^s$. Here, Q^r is sigma-additive and Q^s is purely finitely additive.

- $\text{ba}(\Omega, \mathcal{F}, P)$ can be identified with the dual space $L^\infty(\Omega, \mathcal{F}, P)^*$ of $L^\infty = L^\infty(\Omega, \mathcal{F}, P)$.

A weakly absolutely continuous, finitely additive probability measure $Q \in \text{ba}_1(\Omega, \mathcal{F}, P)$, such that

$$(Q|\mathcal{F}_\rho)'[A] = \mathbb{E}_P[Z_\rho 1_A]$$

for all $A \in \mathcal{F}_\rho$ and finite s.t. ρ, is called Föllmer finitely additive measure for Z.
Definitions: finitely additive case

- $\text{ba}_1(\Omega, \mathcal{F}, P)$: space of finitely additive set functions Q on \mathcal{F}, weakly absolutely continuous with respect to P, with $Q[\Omega] = 1$.
- Q can be uniquely decomposed as $Q = Q^r + Q^s$. Here, Q^r is sigma-additive and Q^s is purely finitely additive.
- $\text{ba}(\Omega, \mathcal{F}, P)$ can be identified with the dual space $L^\infty(\Omega, \mathcal{F}, P)^*$ of $L^\infty = L^\infty(\Omega, \mathcal{F}, P)$.

A weakly absolutely continuous, finitely additive probability measure $Q \in \text{ba}_1(\Omega, \mathcal{F}, P)$, such that

$$
(Q|_{\mathcal{F}_\rho})'[A] = \mathbb{E}_P[Z_\rho 1_A]
$$

for all $A \in \mathcal{F}_\rho$ and finite ρ, is called *Föllmer finitely additive measure for Z*.
Definitions: finitely additive case

- $\text{ba}_1(\Omega, \mathcal{F}, P)$: space of finitely additive set functions Q on \mathcal{F}, weakly absolutely continuous with respect to P, with $Q[\Omega] = 1$.
- Q can be uniquely decomposed as $Q = Q' + Q^s$. Here, Q' is sigma-additive and Q^s is purely finitely additive.
- $\text{ba}(\Omega, \mathcal{F}, P)$ can be identified with the dual space $L^\infty(\Omega, \mathcal{F}, P)^*$ of $L^\infty = L^\infty(\Omega, \mathcal{F}, P)$.

A weakly absolutely continuous, finitely additive probability measure $Q \in \text{ba}_1(\Omega, \mathcal{F}, P)$, such that

$$(Q|_{\mathcal{F}_\rho})'[A] = \mathbb{E}_P[Z_\rho 1_A]$$

for all $A \in \mathcal{F}_\rho$ and finite s.t. ρ,

is called Föllmer finitely additive measure for Z.
Definitions: finitely additive case

• $\text{ba}_1(\Omega, \mathcal{F}, P)$: space of finitely additive set functions Q on \mathcal{F}, weakly absolutely continuous with respect to P, with $Q[\Omega] = 1$.

• Q can be uniquely decomposed as $Q = Q^r + Q^s$. Here, Q^r is sigma-additive and Q^s is purely finitely additive.

• $\text{ba}(\Omega, \mathcal{F}, P)$ can be identified with the dual space $L^\infty(\Omega, \mathcal{F}, P)^*$ of $L^\infty = L^\infty(\Omega, \mathcal{F}, P)$.

A weakly absolutely continuous, finitely additive probability measure $Q \in \text{ba}_1(\Omega, \mathcal{F}, P)$, such that

$$(Q|_{\mathcal{F}_\rho})^r[A] = \mathbb{E}_P[Z_\rho 1_A] \quad \text{for all } A \in \mathcal{F}_\rho \text{ and finite s.t. } \rho,$$

is called Föllmer finitely additive measure for Z.
Comparison of Föllmer f.a. and c.a. measures

- If Z is a uniformly integrable P–martingale and if $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t$, then each Föllmer countably additive measure for Z is a Föllmer finitely additive measure for Z. Moreover, the class of Föllmer finitely additive measures is strictly larger than the class of Föllmer countably additive measures (in most cases).

- If Z is not a uniformly integrable P–martingale, then the sets of Föllmer countably additive measures for Z and of Föllmer finitely additive measures for Z are disjoint.

- In general, the existence of a Föllmer countably additive measure does not imply the existence of a Föllmer finitely additive measure (e.g., finite probability space), nor does the opposite implication hold (e.g., under “usual assumptions”).
Comparison of Föllmer f.a. and c.a. measures

• If Z is a uniformly integrable P–martingale and if $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t$, then each Föllmer countably additive measure for Z is a Föllmer finitely additive measure for Z. Moreover, the class of Föllmer finitely additive measures is strictly larger than the class of Föllmer countably additive measures (in most cases).

• If Z is not a uniformly integrable P–martingale, then the sets of Föllmer countably additive measures for Z and of Föllmer finitely additive measures for Z are disjoint.

• In general, the existence of a Föllmer countably additive measure does not imply the existence of a Föllmer finitely additive measure (e.g., finite probability space), nor does the opposite implication hold (e.g., under “usual assumptions”).
Comparison of Föllmer f.a. and c.a. measures

• If Z is a uniformly integrable P–martingale and if $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t$, then each Föllmer countably additive measure for Z is a Föllmer finitely additive measure for Z. Moreover, the class of Föllmer finitely additive measures is strictly larger than the class of Föllmer countably additive measures (in most cases).

• If Z is not a uniformly integrable P–martingale, then the sets of Föllmer countably additive measures for Z and of Föllmer finitely additive measures for Z are disjoint.

• In general, the existence of a Föllmer countably additive measure does not imply the existence of a Föllmer finitely additive measure (e.g., finite probability space), nor does the opposite implication hold (e.g., under “usual assumptions”).
Existence and uniqueness: c.a. case (preparation)

Assumption \mathcal{P}: Let E be a state space, and let $\Delta \notin E$ be a cemetery state. For all $\omega \in (E \cup \{\Delta\})^{[0,\infty)}$ define

$$\zeta(\omega) = \inf\{t \geq 0 : \omega(t) = \Delta\}.$$

Let $\Omega \subset (E \cup \{\Delta\})^{[0,\infty)}$ be the space of paths $\omega : [0, \infty) \to E \cup \{\Delta\}$, for which ω is càdlàg on $[0, \zeta(\omega))$, and for which $\omega(t) = \Delta$ for all $t \geq \zeta(\omega)$.

For all $t \geq 0$ define $X_t(\omega) = \omega(t)$ and the sigma algebras $\mathcal{F}_t^0 = \sigma(X_s : s \in [0, t])$ and $\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s^0$. Moreover, set $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t^0 = \bigvee_{t \geq 0} \mathcal{F}_t$.

$$\hat{\tau}^Z_n = \inf\{t \geq 0 : Z_t \geq n\} \wedge n; \quad \hat{\tau}^Z = \lim_{n \uparrow \infty} \hat{\tau}^Z_n.$$
Existence and uniqueness: c.a. case (preparation)

Assumption \mathcal{P}: Let E be a state space, and let $\Delta \notin E$ be a cemetery state. For all $\omega \in (E \cup \{\Delta\})^{[0,\infty)}$ define

$$\zeta(\omega) = \inf\{t \geq 0 : \omega(t) = \Delta\}.$$

Let $\Omega \subset (E \cup \{\Delta\})^{[0,\infty)}$ be the space of paths $\omega : [0, \infty) \to E \cup \{\Delta\}$, for which ω is càdlàg on $[0, \zeta(\omega))$, and for which $\omega(t) = \Delta$ for all $t \geq \zeta(\omega)$.

For all $t \geq 0$ define $X_t(\omega) = \omega(t)$ and the sigma algebras $\mathcal{F}_t^0 = \sigma(X_s : s \in [0, t])$ and $\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s^0$. Moreover, set $\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t^0 = \bigvee_{t \geq 0} \mathcal{F}_t$.

$$\hat{\tau}_n^Z = \inf\{t \geq 0 : Z_t \geq n\} \wedge n; \quad \hat{\tau}^Z = \lim_{n \uparrow \infty} \hat{\tau}_n^Z.$$
Existence and uniqueness: c.a. case (preparation)

Assumption \(\mathcal{P} \): Let \(E \) be a state space, and let \(\Delta \notin E \) be a cemetery state. For all \(\omega \in (E \cup \{\Delta\})^{[0,\infty)} \) define

\[
\zeta(\omega) = \inf\{t \geq 0 : \omega(t) = \Delta\}.
\]

Let \(\Omega \subset (E \cup \{\Delta\})^{[0,\infty)} \) be the space of paths \(\omega : [0, \infty) \to E \cup \{\Delta\} \), for which \(\omega \) is càdlàg on \([0, \zeta(\omega))\), and for which \(\omega(t) = \Delta \) for all \(t \geq \zeta(\omega) \).

For all \(t \geq 0 \) define \(X_t(\omega) = \omega(t) \) and the sigma algebras \(\mathcal{F}_t^0 = \sigma(X_s : s \in [0, t]) \) and \(\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s^0 \). Moreover, set \(\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t^0 = \bigvee_{t \geq 0} \mathcal{F}_t \).

\[
\hat{\tau}^Z_n = \inf\{t \geq 0 : Z_t \geq n\} \land n; \quad \hat{\tau}^Z = \lim_{n \uparrow \infty} \hat{\tau}^Z_n.
\]
Existence and uniqueness: c.a. case (preparation)

Assumption \(\mathcal{P} \): Let \(E \) be a state space, and let \(\Delta \notin E \) be a cemetery state. For all \(\omega \in (E \cup \{\Delta\})^{[0,\infty)} \) define

\[
\zeta(\omega) = \inf\{t \geq 0 : \omega(t) = \Delta\}.
\]

Let \(\Omega \subset (E \cup \{\Delta\})^{[0,\infty)} \) be the space of paths \(\omega : [0, \infty) \to E \cup \{\Delta\} \), for which \(\omega \) is càdlàg on \([0, \zeta(\omega))\), and for which \(\omega(t) = \Delta \) for all \(t \geq \zeta(\omega) \).

For all \(t \geq 0 \) define \(X_t(\omega) = \omega(t) \) and the sigma algebras \(\mathcal{F}_0^t = \sigma(X_s : s \in [0, t]) \) and \(\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s^0 \). Moreover, set \(\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t^0 = \bigvee_{t \geq 0} \mathcal{F}_t \).

\[
\hat{\tau}_n^Z = \inf\{t \geq 0 : Z_t \geq n\} \wedge n; \quad \hat{\tau}^Z = \lim_{n \uparrow \infty} \hat{\tau}_n^Z.
\]
Existence and uniqueness: c.a. case (preparation)

Assumption \(\mathcal{P} \): Let \(E \) be a state space, and let \(\Delta \notin E \) be a cemetery state. For all \(\omega \in (E \cup \{\Delta\})^{[0,\infty)} \) define

\[
\zeta(\omega) = \inf\{ t \geq 0 : \omega(t) = \Delta \}.
\]

Let \(\Omega \subset (E \cup \{\Delta\})^{[0,\infty)} \) be the space of paths \(\omega : [0, \infty) \to E \cup \{\Delta\} \), for which \(\omega \) is càdlàg on \([0, \zeta(\omega))\), and for which \(\omega(t) = \Delta \) for all \(t \geq \zeta(\omega) \).

For all \(t \geq 0 \) define \(X_t(\omega) = \omega(t) \) and the sigma algebras \(\mathcal{F}_t^0 = \sigma(X_s : s \in [0, t]) \) and \(\mathcal{F}_t = \bigcap_{s > t} \mathcal{F}_s^0 \). Moreover, set \(\mathcal{F} = \bigvee_{t \geq 0} \mathcal{F}_t^0 = \bigvee_{t \geq 0} \mathcal{F}_t \).

\[
\hat{\tau}^Z_n = \inf\{ t \geq 0 : Z_t \geq n \} \wedge n; \quad \hat{\tau}^Z = \lim_{n \uparrow \infty} \hat{\tau}^Z_n.
\]
Existence and uniqueness: c.a. case (theorem)

Under Assumption \((\mathcal{P}) \), suppose that one of the following conditions hold:

- \(Z \) is a \(P \)–local martingale;
- \(P \) satisfies \(\mathbb{E}_P[Z \zeta \mathbf{1}_{\{\zeta < \infty\}}] = 0 \).

Then there exist \(\tau \) and \(Q \) such that (1) holds. If \(Z \) is a \(P \)–local martingale, then we can use \(\tau = \hat{\tau}^Z \). Moreover:

(I) The following conditions are equivalent:

 \(a \) the set \(\{ \tau < \zeta \} \) is \(Q\|F_\tau \)–negligible;

 \(b \) there is a unique Föllmer countably additive measure for \((Z, \tau) \).

(II) If \(\bar{\tau} \) is a stopping time such that the pair \((Q, \bar{\tau}) \) also satisfies (1), then \(Q[\tau = \bar{\tau}] = 1 \).

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if \(E \) is uncountable.

- \(c \) The \(P \)–supermartingale \(Z \) is a \(P \)–local martingale and the set \(\{ \hat{\tau}^Z < \zeta \} \) is \(\hat{Q}^Z\|F_{\hat{\tau}^Z} \)–negligible;
- \(d \) there is a unique Föllmer pair for \(Z \).
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\(\mathcal{P}\)), suppose that one of the following conditions hold:

- \(Z\) is a \(P\)-local martingale;
- \(P\) satisfies \(\mathbb{E}_P[Z\zeta 1_{\{\zeta<\infty\}}] = 0\).

Then there exist \(\tau\) and \(Q\) such that (1) holds. If \(Z\) is a \(P\)-local martingale, then we can use \(\tau = \hat{\tau}^Z\). Moreover:

(I) The following conditions are equivalent:
 (a) the set \(\{\tau < \zeta\}\) is \(Q|_{\mathcal{F}_\tau}\)-negligible;
 (b) there is a unique Föllmer countably additive measure for \((Z, \tau)\).

(II) If \(\tilde{\tau}\) is a stopping time such that the pair \((Q, \tilde{\tau})\) also satisfies (1), then \(Q[\tau = \tilde{\tau}] = 1\).

(III) The following statement in (c) always implies the one in (d).
 The reverse implication holds if \(E\) is uncountable.
 (c) The \(P\)-supermartingale \(Z\) is a \(P\)-local martingale and the set \(\{\hat{\tau}^Z < \zeta\}\) is \(Q^F|_{\mathcal{F}_{\hat{\tau}^Z}}\)-negligible;
 (d) there is a unique Föllmer pair for \(Z\).
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\mathcal{P}), suppose that one of the following conditions hold:

- Z is a P–local martingale;
- P satisfies $\mathbb{E}_P[Z \zeta 1_{\{\zeta < \infty\}}] = 0$.

Then there exist τ and Q such that (1) holds. If Z is a P–local martingale, then we can use $\tau = \hat{\tau}^Z$. Moreover:

(I) The following conditions are equivalent:

(a) the set $\{\tau < \zeta\}$ is $Q|_{\mathcal{F}_{\tau^-}}$–negligible;
(b) there is a unique Föllmer countably additive measure for (Z, τ).

(II) If $\tilde{\tau}$ is a stopping time such that the pair $(Q, \tilde{\tau})$ also satisfies (1), then $Q[\tau = \tilde{\tau}] = 1$.

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if E is uncountable.

(c) The P–supermartingale Z is a P–local martingale and the set $\{\hat{\tau}^Z < \zeta\}$ is $\hat{Q}^Z|_{\mathcal{F}_{\hat{\tau}^Z^-}}$–negligible;
(d) there is a unique Föllmer pair for Z.
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\(\mathcal{P}\)), suppose that one of the following conditions hold:

- \(Z\) is a \(P\)–local martingale;
- \(P\) satisfies \(\mathbb{E}_P[Z\xi 1_{\{\xi<\infty\}}] = 0\).

Then there exist \(\tau\) and \(Q\) such that (1) holds. If \(Z\) is a \(P\)–local martingale, then we can use \(\tau = \hat{\tau}^Z\). Moreover:

(I) The following conditions are equivalent:

(a) the set \(\{\tau < \xi\}\) is \(Q|\mathcal{F}_{\tau}\)–negligible;
(b) there is a unique Föllmer countably additive measure for \((Z, \tau)\).

(II) If \(\tilde{\tau}\) is a stopping time such that the pair \((Q, \tilde{\tau})\) also satisfies (1), then \(Q[\tau = \tilde{\tau}] = 1\).

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if \(E\) is uncountable.

(c) The \(P\)–supermartingale \(Z\) is a \(P\)–local martingale and the set \(\{\hat{\tau}^Z < \xi\}\) is \(\hat{Q}^Z|\mathcal{F}_{\hat{\tau}^Z}\)–negligible;
(d) there is a unique Föllmer pair for \(Z\).
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\mathcal{P}), suppose that one of the following conditions hold:

- Z is a P–local martingale;
- P satisfies $\mathbb{E}_P[Z\zeta 1_{\{\zeta<\infty\}}] = 0$.

Then there exist τ and Q such that (1) holds. If Z is a P–local martingale, then we can use $\tau = \hat{\tau}^Z$. Moreover:

(I) The following conditions are equivalent:
 - (a) the set $\{\tau < \zeta\}$ is $Q|\mathcal{F}_{\tau^-}$–negligible;
 - (b) there is a unique Föllmer countably additive measure for (Z, τ).

(II) If $\tilde{\tau}$ is a stopping time such that the pair $(Q, \tilde{\tau})$ also satisfies (1), then $Q[\tau = \tilde{\tau}] = 1$.

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if E is uncountable.
 - (c) The P–supermartingale Z is a P–local martingale and the set $\{\hat{\tau}^Z < \zeta\}$ is $\hat{Q}^Z|\mathcal{F}_{\hat{\tau}^Z^-}$–negligible;
 - (d) there is a unique Föllmer pair for Z.
Existence and uniqueness: c.a. case (theorem)

Under Assumption (P), suppose that one of the following conditions hold:

- \(Z \) is a \(P \)-local martingale;
- \(P \) satisfies \(\mathbb{E}_P[Z\zeta \mathbf{1}_{\{\zeta<\infty\}}] = 0 \).

Then there exist \(\tau \) and \(Q \) such that (1) holds. If \(Z \) is a \(P \)-local martingale, then we can use \(\tau = \hat{\tau}^Z \). Moreover:

(I) The following conditions are equivalent:
- (a) the set \(\{ \tau < \zeta \} \) is \(Q|_{\mathcal{F}_{\tau^-}} \)-negligible;
- (b) there is a unique Föllmer countably additive measure for \((Z, \tau)\).

(II) If \(\tilde{\tau} \) is a stopping time such that the pair \((Q, \tilde{\tau})\) also satisfies (1), then \(Q[\tau = \tilde{\tau}] = 1 \).

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if \(E \) is uncountable.
- (c) The \(P \)-supermartingale \(Z \) is a \(P \)-local martingale and the set \(\{ \hat{\tau}^Z < \zeta \} \) is \(\hat{Q}^Z|_{\mathcal{F}_{\hat{\tau}^Z^-}} \)-negligible;
- (d) there is a unique Föllmer pair for \(Z \).
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\mathcal{P}), suppose that one of the following conditions hold:

- Z is a P–local martingale;
- P satisfies $\mathbb{E}_P[Z\zeta 1_{\{\zeta<\infty\}}] = 0$.

Then there exist τ and Q such that (1) holds. If Z is a P–local martingale, then we can use $\tau = \hat{\tau}^Z$. Moreover:

(I) The following conditions are equivalent:
 (a) the set $\{\tau < \zeta\}$ is $Q|_{\mathcal{F}_\tau}$–negligible;
 (b) there is a unique Föllmer countably additive measure for (Z, τ).

(II) If $\tilde{\tau}$ is a stopping time such that the pair $(Q, \tilde{\tau})$ also satisfies (1), then $Q[\tau = \tilde{\tau}] = 1$.

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if E is uncountable.

 (c) The P–supermartingale Z is a P–local martingale and the set $\{\hat{\tau}^Z < \zeta\}$ is $\hat{Q}^Z|_{\mathcal{F}_{\hat{\tau}^Z}}$–negligible;
 (d) there is a unique Föllmer pair for Z.
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\(P\)), suppose that one of the following conditions hold:

- \(Z\) is a \(P\)–local martingale;
- \(P\) satisfies \(E_P[Z \zeta \mathbf{1}_{\{\zeta < \infty\}}] = 0\).

Then there exist \(\tau\) and \(Q\) such that (1) holds. If \(Z\) is a \(P\)–local martingale, then we can use \(\tau = \hat{\tau}^Z\). Moreover:

(I) The following conditions are equivalent:

- (a) the set \(\{\tau < \zeta\}\) is \(Q|\mathcal{F}_\tau\)–negligible;
- (b) there is a unique Föllmer countably additive measure for \((Z, \tau)\).

(II) If \(\tilde{\tau}\) is a stopping time such that the pair \((Q, \tilde{\tau})\) also satisfies (1), then \(Q[\tau = \tilde{\tau}] = 1\).

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if \(E\) is uncountable.

- (c) The \(P\)–supermartingale \(Z\) is a \(P\)–local martingale and the set \(\{\hat{\tau}^Z < \zeta\}\) is \(\hat{Q}^Z|\mathcal{F}_{\hat{\tau}^Z\tau}\)–negligible;
- (d) there is a unique Föllmer pair for \(Z\).
Existence and uniqueness: c.a. case (theorem)

Under Assumption (\mathcal{P}), suppose that one of the following conditions hold:

- Z is a P–local martingale;
- P satisfies $\mathbb{E}_P[Z\zeta 1_{\{\zeta < \infty\}}] = 0$.

Then there exist τ and Q such that (1) holds. If Z is a P–local martingale, then we can use $\tau = \hat{\tau}^Z$. Moreover:

(I) The following conditions are equivalent:

(a) the set $\{\tau < \zeta\}$ is $Q|\mathcal{F}_{\tau^-}$–negligible;
(b) there is a unique Föllmer countably additive measure for (Z, τ).

(II) If $\tilde{\tau}$ is a stopping time such that the pair $(Q, \tilde{\tau})$ also satisfies (1), then $Q[\tau = \tilde{\tau}] = 1$.

(III) The following statement in (c) always implies the one in (d). The reverse implication holds if E is uncountable.

(c) The P–supermartingale Z is a P–local martingale and the set $\{\hat{\tau}^Z < \zeta\}$ is $\hat{Q}^Z|\mathcal{F}_{\hat{\tau}^Z^-}$–negligible;

(d) there is a unique Föllmer pair for Z.
Existence and uniqueness: c.a. case (proof)

Rough outline:

- **Existence:**

 - Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).

 - Use multiplicative decomposition: $Z = MD$.

 - Construct measure for local martingale M (use an extension theorem).

 - Interpret D as survival function (proceed as when constructing killed diffusions).

- **Uniqueness:**

 - Read lots of papers and don't give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

- **Existence:**
 - **Motivation:** Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 - Use multiplicative decomposition: $Z = MD$.
 - Construct measure for local martingale M (use an extension theorem).
 - Interpret D as survival function (proceed as when constructing killed diffusions).

- **Uniqueness:**
 - Read lots of papers and don't give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

• Existence:
 • Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 • Use multiplicative decomposition: $Z = MD$.
 • Construct measure for local martingale M (use an extension theorem).
 • Interpret D as survival function (proceed as when constructing killed diffusions).

• Uniqueness:
 • Read lots of papers and don't give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

• Existence:
 • Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 • Use multiplicative decomposition: $Z = MD$.
 • Construct measure for local martingale M (use an extension theorem).
 • Interpret D as survival function (proceed as when constructing killed diffusions).

• Uniqueness:
 • Read lots of papers and don't give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

• Existence:
 • Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 • Use multiplicative decomposition: $Z = MD$.
 • Construct measure for local martingale M (use an extension theorem).
 • Interpret D as survival function (proceed as when constructing killed diffusions).

• Uniqueness:
 • Read lots of papers and don't give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

• Existence:
 • Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 • Use multiplicative decomposition: $Z = MD$.
 • Construct measure for local martingale M (use an extension theorem).
 • Interpret D as survival function (proceed as when constructing killed diffusions).

• Uniqueness:
 • Read lots of papers and don’t give up.
Existence and uniqueness: c.a. case (proof)

Rough outline:

- **Existence:**
 - Motivation: Interpret Z as the reciprocal of a local martingale that can jump to zero under Q. (e.g. $Z_t = e^{-t}$).
 - Use multiplicative decomposition: $Z = MD$.
 - Construct measure for local martingale M (use an extension theorem).
 - Interpret D as survival function (proceed as when constructing killed diffusions).

- **Uniqueness:**
 - Read lots of papers and don’t give up.
Existence and non-uniqueness: f.a. case

Assumption \mathcal{B}: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ supports a Brownian motion $W = (W_t)_{t \geq 0}$.

Under Assumption (\mathcal{B}), there exists a Föllmer finitely additive measure for Z. The Föllmer finitely additive measure is never unique.
Existence and non-uniqueness: f.a. case

Assumption \mathcal{B}: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, P)$ supports a Brownian motion $W = (W_t)_{t \geq 0}$.

Under Assumption (\mathcal{B}), there exists a Föllmer finitely additive measure for Z. The Föllmer finitely additive measure is never unique.
Existence and uniqueness: f.a. case (proof)

Rough outline:

• **Existence:**
 - Prove: There exists a family \((L^{(i,j,k,m,n)})_{i,j,k,m,n \in \mathbb{N}} \) of u.i. nonnegative \(P \)-martingales with \(\mathbb{E}_P[L_0^{(i,j,k,m,n)}] = 1 \), s.t.
 \[
 \lim_{i \to \infty} \lim_{j \to \infty} \lim_{k \to \infty} \lim_{m \to \infty} \lim_{n \to \infty} L^{(i,j,k,m,n)}_\rho = Z_\rho
 \]
 for all finite s.t. \(\rho \). (Use suitable “suicide strategies” and localize.)
 - \(Q \) is then a cluster point in the family of the (c.a.) probability measures generated by \(L^{(i,j,k,m,n)}_\infty \).

• **Uniqueness:** Consider two cases:
 - (A) \(P[Z_\infty > 0] > 0 \) (destroy some mass of \(Q^r \) at time \(\infty \))
 - (B) \(P[\rho < \infty] = 1 \), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\} \). (Play around with \(Q^s \) after \(\rho \) — “supported on the set where \(L^{(i,j,k,m,n)}_\rho \) is large”.)
Existence and uniqueness: f.a. case (proof)

Rough outline:

- **Existence:**
 - Prove: There exists a family \((L^{(i,j,k,m,n)})_{i,j,k,m,n\in\mathbb{N}}\) of u.i. nonnegative \(P\)-martingales with \(E_P[L_0^{(i,j,k,m,n)}] = 1\), s.t.
 \[
 \lim_{i\uparrow\infty} \lim_{j\uparrow\infty} \lim_{k\uparrow\infty} \lim_{m\uparrow\infty} \lim_{n\uparrow\infty} L^{(i,j,k,m,n)}_\rho = Z_\rho
 \]
 for all finite s.t. \(\rho\). (Use suitable “suicide strategies” and localize.)
 - \(Q\) is then a cluster point in the family of the (c.a.) probability measures generated by \(L^{(i,j,k,m,n)}_{\infty}\).

- **Uniqueness:** Consider two cases:
 (A) \(P[Z_\infty > 0] > 0\) (destroy some mass of \(Q^r\) at time \(\infty\))
 (B) \(P[\rho < \infty] = 1\), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\}\). (play around with \(Q^s\) after \(\rho\) — “supported on the set where \(L^{(i,j,k,m,n)}_\rho\) is large”}

\(\rho\)
Existence and uniqueness: f.a. case (proof)

Rough outline:

• Existence:
 • Prove: There exists a family \((L^{(i,j,k,m,n)}_{i,j,k,m,n\in\mathbb{N}})_{i,j,k,m,n\in\mathbb{N}}\) of u.i. nonnegative \(P\)-martingales with \(\mathbb{E}_P[L^0_{i,j,k,m,n}] = 1\), s.t.

\[
\lim_{i \to \infty} \lim_{j \to \infty} \lim_{k \to \infty} \lim_{m \to \infty} \lim_{n \to \infty} L_{\rho}^{(i,j,k,m,n)} = Z_{\rho}
\]

for all finite s.t. \(\rho\). (Use suitable “suicide strategies” and localize.)

• \(Q\) is then a cluster point in the family of the (c.a.) probability measures generated by \(L_{\infty}^{(i,j,k,m,n)}\).

• Uniqueness: Consider two cases:

 (A) \(P[Z_\infty > 0] > 0\) (destroy some mass of \(Q^r\) at time \(\infty\))

 (B) \(P[\rho < \infty] = 1\), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\}\). (play around with \(Q^s\) after \(\rho\) — “supported on the set where \(L_{\rho}^{(i,j,k,m,n)}\) is large”)

Existence and uniqueness: f.a. case (proof)

Rough outline:

- **Existence:**
 - Prove: There exists a family \((L^{(i,j,k,m,n)})_{i,j,k,m,n \in \mathbb{N}}\) of u.i. nonnegative \(P\)-martingales with \(E_P[L_0^{(i,j,k,m,n)}] = 1\), s.t.
 \[
 \lim_{i \to \infty} \lim_{j \to \infty} \lim_{k \to \infty} \lim_{m \to \infty} \lim_{n \to \infty} L^{(i,j,k,m,n)}_{\rho} = Z_\rho
 \]
 for all finite s.t. \(\rho\). (Use suitable “suicide strategies” and localize.)
 - \(Q\) is then a cluster point in the family of the (c.a.) probability measures generated by \(L^{(i,j,k,m,n)}_{\infty}\).

- **Uniqueness:** Consider two cases:
 - (A) \(P[Z_\infty > 0] > 0\) (destroy some mass of \(Q^r\) at time \(\infty\))
 - (B) \(P[\rho < \infty] = 1\), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\}\). (play around with \(Q^s\) after \(\rho\) — “supported on the set where \(L^{(i,j,k,m,n)}_{\rho}\) is large”)

Existence and uniqueness: f.a. case (proof)

Rough outline:

• Existence:
 • Prove: There exists a family \((L^{(i,j,k,m,n)})_{i,j,k,m,n\in\mathbb{N}}\) of u.i. nonnegative \(P\)-martingales with \(\mathbb{E}_P[L_0^{(i,j,k,m,n)}] = 1\), s.t.

\[
\lim_{i\uparrow\infty} \lim_{j\uparrow\infty} \lim_{k\uparrow\infty} \lim_{m\uparrow\infty} \lim_{n\uparrow\infty} L^{(i,j,k,m,n)}_{\rho} = Z_{\rho}
\]

for all finite s.t. \(\rho\). (Use suitable “suicide strategies” and localize.)

• \(Q\) is then a cluster point in the family of the (c.a.) probability measures generated by \(L^{(i,j,k,m,n)}_{\infty}\).

• Uniqueness: Consider two cases:

 (A) \(P[Z_\infty > 0] > 0\) (destroy some mass of \(Q^r\) at time \(\infty\))

 (B) \(P[\rho < \infty] = 1\), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\}\). (play around with \(Q^s\) after \(\rho\) — “supported on the set where \(L^{(i,j,k,m,n)}_{\rho}\) is large”)
Existence and uniqueness: f.a. case (proof)

Rough outline:

• Existence:
 • Prove: There exists a family \((L^{(i,j,k,m,n)})_{i,j,k,m,n \in \mathbb{N}}\) of u.i. nonnegative \(P\)-martingales with \(E_P[L^{(i,j,k,m,n)}_0] = 1\), s.t.

\[
\lim_{i \to \infty} \lim_{j \to \infty} \lim_{k \to \infty} \lim_{m \to \infty} \lim_{n \to \infty} L^{(i,j,k,m,n)}_\rho = Z_\rho
\]

for all finite s.t. \(\rho\). (Use suitable “suicide strategies” and localize.)

• \(Q\) is then a cluster point in the family of the (c.a.) probability measures generated by \(L^{(i,j,k,m,n)}_\infty\).

• Uniqueness: Consider two cases:
 (A) \(P[Z_\infty > 0] > 0\) (destroy some mass of \(Q^r\) at time \(\infty\))
 (B) \(P[\rho < \infty] = 1\), where \(\rho = \inf\{t \geq 0 : Z_t \leq 1/2\}\). (play around with \(Q^s\) after \(\rho\) — “supported on the set where \(L^{(i,j,k,m,n)}_\rho\) is large”)
Definition: local martingale

A stochastic process Z is a *local martingale* if there exists a sequence of stopping times (τ_n) with $\lim_{n \uparrow \infty} \tau_n = \infty$ such that $Z^{\tau_n} := (Z(t \wedge \tau_n))$ is a martingale.

Example (Stochastic exponential)

For a continuous local martingale Y, the process

$$\mathcal{E}(Y)(\cdot) = \exp \left(Y(\cdot) - \frac{1}{2} [Y, Y](\cdot) \right)$$

is a nonnegative local martingale.
Definition: local martingale

A stochastic process Z is a *local martingale* if there exists a sequence of stopping times (τ_n) with $\lim_{n \uparrow \infty} \tau_n = \infty$ such that $Z^{\tau_n} := (Z(t \wedge \tau_n))$ is a martingale.

Example (Stochastic exponential)

For a continuous local martingale Y, the process

$$\mathcal{E}(Y)(\cdot) = \exp \left(Y(\cdot) - \frac{1}{2} [Y, Y](\cdot) \right)$$

is a nonnegative local martingale.
Stochastic exponentials

- Consider an arbitrary local martingale M with jump measure μ (having compensator ν).
- Thus,

$$M = M_0 + M^c + x \ast (\mu - \nu).$$

- Assume that $M_0 = 1$ and jumps of M are bounded from below by -1.
- Define the stochastic exponential of M by

$$\mathcal{E}(M)_t = \exp \left(M_t - \frac{1}{2}[M, M]_t^c - (x - \log(1 + x)) \ast \mu_t \right).$$

- Then $\mathcal{E}(M)$ is nonnegative local martingale with $\mathcal{E}(M)_0 = 1$ since it is the unique strong solution of the SDE

$$Z = 1 + Z_\cdot M.$$
Stochastic exponentials

- Consider an arbitrary local martingale M with jump measure μ (having compensator ν).
- Thus,

$$M = M_0 + M^c + x \ast (\mu - \nu).$$

- Assume that $M_0 = 1$ and jumps of M are bounded from below by -1.
- Define the stochastic exponential of M by

$$\mathcal{E}(M)_t = \exp \left(M_t - \frac{1}{2} [M, M]^c_t - (x - \log(1 + x)) \ast \mu_t \right).$$

- Then $\mathcal{E}(M)$ is nonnegative local martingale with $\mathcal{E}(M)_0 = 1$ since it is the unique strong solution of the SDE

$$Z = 1 + Z_- \cdot M.$$
Stochastic exponentials

• Consider an arbitrary local martingale M with jump measure μ (having compensator ν).
• Thus,

$$M = M_0 + M^c + x \ast (\mu - \nu).$$

• Assume that $M_0 = 1$ and jumps of M are bounded from below by -1.
• Define the stochastic exponential of M by

$$\mathcal{E}(M)_t = \exp \left(M_t - \frac{1}{2} [M, M]_t^c - (x - \log(1 + x)) \ast \mu_t \right).$$

• Then $\mathcal{E}(M)$ is nonnegative local martingale with $\mathcal{E}(M)_0 = 1$ since it is the unique strong solution of the SDE

$$Z = 1 + Z_- \cdot M.$$
Stochastic exponentials

• Consider an arbitrary local martingale M with jump measure μ (having compensator ν).

• Thus,

$$M = M_0 + M^c + x * (\mu - \nu).$$

• Assume that $M_0 = 1$ and jumps of M are bounded from below by -1.

• Define the stochastic exponential of M by

$$\mathcal{E}(M)_t = \exp \left(M_t - \frac{1}{2} [M, M]^c_t - (x - \log(1 + x)) * \mu_t \right).$$

• Then $\mathcal{E}(M)$ is nonnegative local martingale with $\mathcal{E}(M)_0 = 1$ since it is the unique strong solution of the SDE

$$Z = 1 + Z_- \cdot M.$$
Stochastic exponentials

• Consider an arbitrary local martingale \(M \) with jump measure \(\mu \) (having compensator \(\nu \)).

• Thus,

\[
M = M_0 + M^c + x \ast (\mu - \nu).
\]

• Assume that \(M_0 = 1 \) and jumps of \(M \) are bounded from below by \(-1\).

• Define the stochastic exponential of \(M \) by

\[
\mathcal{E}(M)_t = \exp \left(M_t - \frac{1}{2}[M, M]_t^c - (x - \log(1 + x)) \ast \mu_t \right).
\]

• Then \(\mathcal{E}(M) \) is nonnegative local martingale with \(\mathcal{E}(M)_0 = 1 \) since it is the unique strong solution of the SDE

\[
Z = 1 + Z_- \cdot M.
\]
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:
 $$\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_{\sigma}) \mathbf{1}_{\{\mathcal{E}(M)_{\sigma} > 0\}} \right] < \infty,$$
 where, for some $a \in \mathbb{R} \setminus \{0\}$,
 $$A = (1 - a)M + \left(a - \frac{1}{2} \right) [M, M]^c + \left(\log(1 + x) - \frac{(1 - a)x^2 + x}{1 + x} \right) \ast \mu.$$
- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_\sigma)1_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty, \]
 where, for some $a \in \mathbb{R} \setminus \{0\}$,
 \[A = (1 - a)M + \left(a - \frac{1}{2} \right) [M, M]^c + \left(\log(1 + x) - \frac{(1 - a)x^2 + x}{1 + x} \right) * \mu. \]
- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:
 \[\sup_{\sigma \in \mathcal{T}} \mathbb{E}_\mathcal{P} \left[\exp(A_\sigma)1_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty, \]
 where, for some $a \in \mathbb{R} \setminus \{0\}$,
 \[A = (1-a)M + \left(a - \frac{1}{2} \right) [M, M]^c + \left(\log(1 + x) - \frac{(1-a)x^2 + x}{1 + x} \right) \star \mu. \]
- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:
 \[
 \sup_{\sigma \in T} \mathbb{E}_P \left[\exp(A_\sigma) 1_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty,
 \]
 where, for some $a \in \mathbb{R} \setminus \{0\}$,
 \[
 A = (1 - a)M + \left(a - \frac{1}{2} \right) [M, M]^c + \left(\log(1 + x) - \frac{(1 - a)x^2 + x}{1 + x} \right) * \mu.
 \]
- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:

\[
\sup_{\sigma \in T} \mathbb{E}_P \left[\exp(A_\sigma) 1_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty,
\]

where, for some $a \in \mathbb{R} \setminus \{0\}$,

\[
A = (1 - a)M + \left(a - \frac{1}{2} \right) [M, M]^c + \left(\log(1 + x) - \frac{(1 - a)x^2 + x}{1 + x} \right) \ast \mu.
\]

- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Novikov-Kazamaki-type conditions

- Provide sufficient conditions that $\mathcal{E}(M)$ is a uniformly integrable martingale.
- For sake of simplicity, assume that jumps of M are strictly larger than -1.
- Conditions were first provided by Lepingle and Mémin.
- E.g.:

$$
\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_\sigma) \mathbf{1}_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty,
$$
where, for some $a \in \mathbb{R} \setminus \{0\}$,

$$
A = (1 - a)M + \left(a - \frac{1}{2} \right)[M, M]^c + \left(\log(1 + x) - \frac{(1 - a)x^2 + x}{1 + x} \right) * \mu.
$$

- Their proof is “mystérieuse”.
- Here, canonical proof including some slight generalizations.
Idea of a novel proof

• Recall Föllmer countably additive measure Q along with stopping time $\hat{\tau}$ (which can be interpreted as explosion time):

\[Q[\rho < \hat{\tau}] = \mathbb{E}_P[\mathcal{E}(M)_{\rho} \mathbf{1}_{\{\rho<\infty\}}] \]

• Thus: $\mathcal{E}(M)$ is a martingale if and only if $\mathcal{E}(M)$ does not explode under a new measure Q.

• The new measure Q corresponds to the “Radon-Nikodym derivative” $\mathcal{E}(M)$.

• Thus, it is sufficient to check that Novikov-Kazamaki conditions guarantee that the Q–local martingale $1/\mathcal{E}(M)$ does not tend to zero under Q.
Idea of a novel proof

- Recall Föllmer countably additive measure Q along with stopping time $\hat{\tau}$ (which can be interpreted as explosion time):

$$Q[\rho < \hat{\tau}] = \mathbb{E}_P[\mathcal{E}(M)_\rho 1_{\{\rho < \infty\}}]$$

- Thus: $\mathcal{E}(M)$ is a martingale if and only if $\mathcal{E}(M)$ does not explode under a new measure Q.

- The new measure Q corresponds to the “Radon-Nikodym derivative” $\mathcal{E}(M)$.

- Thus, it is sufficient to check that Novikov-Kazamaki conditions guarantee that the Q–local martingale $1/\mathcal{E}(M)$ does not tend to zero under Q.
Idea of a novel proof

• Recall Föllmer countably additive measure Q along with stopping time $\hat{\tau}$ (which can be interpreted as explosion time):

$$Q[\rho < \hat{\tau}] = \mathbb{E}_P[\mathcal{E}(M)_\rho \mathbb{1}_{\{\rho < \infty\}}]$$

• Thus: $\mathcal{E}(M)$ is a martingale if and only if $\mathcal{E}(M)$ does not explode under a new measure Q.

• The new measure Q corresponds to the “Radon-Nikodym derivative” $\mathcal{E}(M)$.

• Thus, it is sufficient to check that Novikov-Kazamaki conditions guarantee that the Q–local martingale $1/\mathcal{E}(M)$ does not tend to zero under Q.
Idea of a novel proof

• Recall Föllmer countably additive measure Q along with stopping time $\hat{\tau}$ (which can be interpreted as explosion time):

$$Q[\rho < \hat{\tau}] = \mathbb{E}_P[\mathcal{E}(M)_{\rho} \mathbf{1}_{\{\rho < \infty\}}]$$

• Thus: $\mathcal{E}(M)$ is a martingale if and only if $\mathcal{E}(M)$ does not explode under a new measure Q.

• The new measure Q corresponds to the “Radon-Nikodym derivative” $\mathcal{E}(M)$.

• Thus, it is sufficient to check that Novikov-Kazamaki conditions guarantee that the Q–local martingale $1/\mathcal{E}(M)$ does not tend to zero under Q.
Convergence of local martingale

Theorem (Limiting behaviour of a local martingale)

Let τ be a positive predictable time, and X a local martingale on $[0, \tau)$ with $\Delta X \geq -1$. Denote the jump measure of X by μ, and let ν be its compensator. The following equalities hold almost surely:

$$\begin{align*}
\left\{ \lim_{t \uparrow \tau} X_t \text{ exists in } \mathbb{R} \right\} &= \left\{ \liminf_{t \uparrow \tau} \left(X_t - \frac{1}{2}[X, X]_t^c - (x - \log(1 + x))1_{x \neq -1} \ast \mu_t \right) > -\infty \right\} \\
&= \left\{ [X, X]_{\tau^-} < \infty \right\} \bigcap \left\{ \limsup_{t \uparrow \tau} X_t > -\infty \right\} \\
&= \left\{ [X, X]_t^c + (|x| \wedge x^2) \ast \nu_{\tau^-} < \infty \right\} \\
&= \left\{ \liminf_{t \uparrow \tau} X_t > -\infty \right\} .
\end{align*}$$
Convergence of local martingale

Theorem (Limiting behaviour of a local martingale)

Let τ be a positive predictable time, and X a local martingale on $[0, \tau)$ with $\Delta X \geq -1$. Denote the jump measure of X by μ, and let ν be its compensator. The following equalities hold almost surely:

$$\left\{ \lim_{t \uparrow \tau} X_t \text{ exists in } \mathbb{R} \right\}$$

$$= \left\{ \liminf_{t \uparrow \tau} \left(X_t - \frac{1}{2} [X, X]_t^c - (x - \log(1 + x))1_{x \neq -1} \ast \mu_t \right) > -\infty \right\}$$

$$= \{ [X, X]_{\tau-} < \infty \} \cap \left\{ \limsup_{t \uparrow \tau} X_t > -\infty \right\}$$

$$= \{ [X, X]_{\tau-}^c + (|x| \wedge x^2) \ast \nu_{\tau-} < \infty \}$$

$$= \left\{ \liminf_{t \uparrow \tau} X_t > -\infty \right\}.$$
Novikov-Kazamaki conditions: outline of the proof

- Starting from the Novikov-Kazamaki condition

\[\sup_{\sigma \in T} \mathbb{E}_P \left[\exp(A_\sigma) \mathbf{1}_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty, \]

change the measure from \(P \) to \(Q \) via “Radon-Nikodym derivative” \(\mathcal{E}(M) \).

- Observe that \(1/\mathcal{E}(M) \) is a \(Q \)–local martingale, in particular, a stochastic exponential \(\mathcal{E}(N) \) of some \(Q \)–local martingale \(N \).

- Assume that \(\mathcal{E}(N) \) tends to zero.

- By means of the last theorem, obtain a contradiction to the Novikov-Kazamaki condition.

- Conclude that \(\mathcal{E}(M) \) is a uniformly integrable \(P \)–martingale.
Novikov-Kazamaki conditions: outline of the proof

- Starting from the Novikov-Kazamaki condition

\[\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_{\sigma}) \mathbf{1}_{\{\mathcal{E}(M)_{\sigma} > 0\}} \right] < \infty, \]

change the measure from \(P \) to \(Q \) via “Radon-Nikodym derivative” \(\mathcal{E}(M) \).

- Observe that \(1/\mathcal{E}(M) \) is a \(Q \)–local martingale, in particular, a stochastic exponential \(\mathcal{E}(N) \) of some \(Q \)–local martingale \(N \).

- Assume that \(\mathcal{E}(N) \) tends to zero.

- By means of the last theorem, obtain a contradiction to the Novikov-Kazamaki condition.

- Conclude that \(\mathcal{E}(M) \) is a uniformly integrable \(P \)–martingale.
Novikov-Kazamaki conditions: outline of the proof

- Starting from the Novikov-Kazamaki condition

\[
\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_\sigma) \mathbf{1}_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty,
\]

change the measure from \(P \) to \(Q \) via “Radon-Nikodym derivative” \(\mathcal{E}(M) \).

- Observe that \(1/\mathcal{E}(M) \) is a \(Q \)-local martingale, in particular, a stochastic exponential \(\mathcal{E}(N) \) of some \(Q \)-local martingale \(N \).

- Assume that \(\mathcal{E}(N) \) tends to zero.

- By means of the last theorem, obtain a contradiction to the Novikov-Kazamaki condition.

- Conclude that \(\mathcal{E}(M) \) is a uniformly integrable \(P \)-martingale.
Novikov-Kazamaki conditions: outline of the proof

• Starting from the Novikov-Kazamaki condition

\[
\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_{\sigma}) \mathbf{1}_{\{\mathcal{E}(M)_{\sigma} > 0\}} \right] < \infty,
\]

change the measure from \(P\) to \(Q\) via “Radon-Nikodym derivative” \(\mathcal{E}(M)\).

• Observe that \(1/\mathcal{E}(M)\) is a \(Q\)–local martingale, in particular, a stochastic exponential \(\mathcal{E}(N)\) of some \(Q\)–local martingale \(N\).

• Assume that \(\mathcal{E}(N)\) tends to zero.

• By means of the last theorem, obtain a contradiction to the Novikov-Kazamaki condition.

• Conclude that \(\mathcal{E}(M)\) is a uniformly integrable \(P\)–martingale.
Novikov-Kazamaki conditions: outline of the proof

- Starting from the Novikov-Kazamaki condition

\[\sup_{\sigma \in \mathcal{T}} \mathbb{E}_P \left[\exp(A_\sigma)1_{\{\mathcal{E}(M)_\sigma > 0\}} \right] < \infty, \]

change the measure from P to Q via “Radon-Nikodym derivative” $\mathcal{E}(M)$.

- Observe that $1/\mathcal{E}(M)$ is a Q–local martingale, in particular, a stochastic exponential $\mathcal{E}(N)$ of some Q–local martingale N.

- Assume that $\mathcal{E}(N)$ tends to zero.

- By means of the last theorem, obtain a contradiction to the Novikov-Kazamaki condition.

- Conclude that $\mathcal{E}(M)$ is a uniformly integrable P–martingale.
Distribution of explosion time: setup

- **Interval** \(I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n) \) with \(-\infty \leq \ell < r \leq \infty\).
- Consider

\[
dX(t) = s(X(t)) \left(dW(t) + b(X(t)) dt \right), \quad X(0) = \xi \in I
\]

- Assume that

\[
\int_K \left(\frac{1}{s^2(y)} + \left| \frac{b(y)}{s(y)} \right| \right) dy < \infty, \quad \text{for every compact set } K \subset I.
\]

- Engelbert & Schmidt prove the existence of a weak solution \(X \), unique in the sense of the probability distribution, and defined up until the “explosion time”

\[
S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}.
\]

- Due to uniqueness, \(X \) is Markovian.
- “Local mean/variance ratio” function \(f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)} \).
Distribution of explosion time: setup

- Interval \(I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n) \) with \(-\infty \leq \ell < r \leq \infty\).
- Consider
 \[
 dX(t) = s(X(t)) (dW(t) + b(X(t))dt), \quad X(0) = \xi \in I
 \]
- Assume that
 \[
 \int_K \left(\frac{1}{s^2(y)} + \frac{|b(y)|}{s(y)} \right) dy < \infty, \quad \text{for every compact set} \ K \subset I.
 \]
- Engelbert & Schmidt prove the existence of a weak solution \(X \), unique in the sense of the probability distribution, and defined up until the “explosion time”
 \[
 S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}.
 \]
- Due to uniqueness, \(X \) is Markovian.
- “Local mean/variance ratio” function \(f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)} \).
Distribution of explosion time: setup

• Interval \(I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n) \) with \(-\infty \leq \ell < r \leq \infty\).

• Consider

\[
dX(t) = s(X(t)) (dW(t) + b(X(t)) dt), \quad X(0) = \xi \in I
\]

• Assume that

\[
\int_K \left(\frac{1}{s^2(y)} + \left| \frac{b(y)}{s(y)} \right| \right) dy < \infty, \quad \text{for every compact set} \ K \subset I.
\]

• Engelbert & Schmidt prove the existence of a weak solution \(X \), unique in the sense of the probability distribution, and defined up until the “explosion time”

\[
S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}.
\]

• Due to uniqueness, \(X \) is Markovian.

• “Local mean/variance ratio” function \(f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)} \).
Distribution of explosion time: setup

- Interval \(I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n) \) with \(-\infty \leq \ell < r \leq \infty\).
- Consider
 \[dX(t) = s(X(t)) (dW(t) + b(X(t)) dt), \quad X(0) = \xi \in I \]
- Assume that
 \[\int_K \left(\frac{1}{s^2(y)} + \frac{|b(y)|}{s(y)} \right) dy < \infty, \text{ for every compact set } K \subset I. \]
- Engelbert & Schmidt prove the existence of a weak solution \(X \), unique in the sense of the probability distribution, and defined up until the “explosion time”
 \[S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}. \]
- Due to uniqueness, \(X \) is Markovian.
- “Local mean/variance ratio” function \(f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)}. \)
Distribution of explosion time: setup

- Interval $I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n)$ with $-\infty \leq \ell < r \leq \infty$.
- Consider
 $$dX(t) = s(X(t)) (dW(t) + b(X(t))dt), \quad X(0) = \xi \in I$$
- Assume that
 $$\int_K \left(\frac{1}{s^2(y)} + \| \frac{b(y)}{s(y)} \| \right) dy < \infty, \text{ for every compact set } K \subset I.$$
- Engelbert & Schmidt prove the existence of a weak solution X, unique in the sense of the probability distribution, and
- defined up until the “explosion time”
 $$S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}.$$
- Due to uniqueness, X is Markovian.
- “Local mean/variance ratio” function $f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)}$.
Distribution of explosion time: setup

- Interval \(I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n) \) with \(-\infty \leq \ell < r \leq \infty\).
- Consider
 \[
 dX(t) = s(X(t)) \left(dW(t) + b(X(t)) dt \right), \quad X(0) = \xi \in I
 \]
- Assume that
 \[
 \int_K \left(\frac{1}{s^2(y)} + \frac{|b(y)|}{s(y)} \right) dy < \infty, \quad \text{for every compact set } K \subset I.
 \]
- Engelbert & Schmidt prove the existence of a weak solution \(X \), unique in the sense of the probability distribution, and defined up until the “explosion time”
 \[
 S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim_{n \uparrow \infty} \inf \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}.
 \]
- Due to uniqueness, \(X \) is Markovian.
- “Local mean/variance ratio” function \(f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)} \).
Distribution of explosion time: setup

- Interval $I = (\ell, r) = \bigcup_{n \in \mathbb{N}} (\ell_n, r_n)$ with $-\infty \leq \ell < r \leq \infty$.
- Consider
 $$dX(t) = s(X(t)) (dW(t) + b(X(t)) dt), \quad X(0) = \xi \in I$$
- Assume that
 $$\int_K \left(\frac{1}{s^2(y)} + \left| \frac{b(y)}{s(y)} \right| \right) dy < \infty, \quad \text{for every compact set } K \subset I.$$
- Engelbert & Schmidt prove the existence of a weak solution X, unique in the sense of the probability distribution, and defined up until the “explosion time” $S := \inf \{ t \geq 0 : X(t) \notin (\ell, r) \} = \lim \inf_{n \uparrow \infty} \{ t \geq 0 : X(t) \notin (\ell_n, r_n) \}$.
- Due to uniqueness, X is Markovian.
- “Local mean/variance ratio” function $f(\cdot) := \frac{b(\cdot)}{s(\cdot)} = \frac{b(\cdot)s(\cdot)}{s^2(\cdot)}$.
Feller’s test of explosions

“Feller’s test” function:

\[v(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u)du \right) \frac{1}{\sigma^2(z)}dz \right) dy \]

- Feller’s test states that \(P[S = \infty] = 1 \) holds if and only if \(v(\ell+) = v(r-) = \infty \) holds.
- Alternative characterizations?
- Yields directly that \(X \) leaves \((\ell_n, r_n)\) almost surely.
Feller’s test of explosions

- “Feller’s test” function:
 \[\nu(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u)du \right) \frac{1}{\sigma^2(z)}dz \right)dy\]

- Feller’s test states that \(P[S = \infty] = 1\) holds if and only if \(\nu(\ell+) = \nu(r-) = \infty\) holds.

- Alternative characterizations?

- Yields directly that \(X\) leaves \((\ell_n, r_n)\) almost surely.
Feller’s test of explosions

- “Feller’s test” function:

\[v(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u) du \right) \frac{1}{s^2(z)} dz \right) dy \]

- Feller’s test states that \(P[S = \infty] = 1 \) holds if and only if \(v(\ell+) = v(r-) = \infty \) holds.

- Alternative characterizations?

- Yields directly that \(X \) leaves \((\ell_n, r_n)\) almost surely.
Feller’s test of explosions

• “Feller’s test” function:

\[v(x) := \int_x^\infty \left(\int_c^y \exp \left(-2 \int_z^y f(u) \, du \right) \frac{1}{\sigma^2(z)} \, dz \right) \, dy \]

• Feller’s test states that \(P[S = \infty] = 1 \) holds if and only if \(v(\ell+) = v(r-) = \infty \) holds.

• Alternative characterizations?

• Yields directly that \(X \) leaves \((\ell_n, r_n)\) almost surely.
Feller’s test: special cases

\[v(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u) \, du \right) \frac{1}{s^2(z)} \, dz \right) \, dy \]

By simplifying \(v(\cdot) \) via Tonelli, criterion of explosions is sometimes easier to check:

- If \(s(\cdot) \) is differentiable and \(b(\cdot) = s'(\cdot)/2 \):
 \[v(x) = \int_c^x \left(\frac{1}{s(y)} \int_c^y \frac{1}{s(z)} \, dz \right) \, dy = \frac{1}{2} \left(\int_c^x \frac{1}{s(z)} \, dz \right)^2. \]

- If \(I = (0, \infty) \) and \(b(\cdot) = 0 \):
 \[v(x) = \int_c^x \frac{x - z}{s^2(z)} \, dz. \]

Therefore, \(P[S = \infty] = 1 \) holds if and only if
\[\int_0^1 \frac{z}{s^2(z)} \, dz = \infty. \]
Feller’s test: special cases

\[v(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u) \, du \right) \frac{1}{s^2(z)} \, dz \right) \, dy \]

By simplifying \(v(\cdot) \) via Tonelli, criterion of explosions is sometimes easier to check:

- If \(s(\cdot) \) is differentiable and \(b(\cdot) = s'(\cdot)/2 \):
 \[v(x) = \int_c^x \left(\frac{1}{s(y)} \int_c^y \frac{1}{s(z)} \, dz \right) \, dy = \frac{1}{2} \left(\int_c^x \frac{1}{s(z)} \, dz \right)^2. \]

- If \(I = (0, \infty) \) and \(b(\cdot) = 0 \):
 \[v(x) = \int_c^x \frac{x - z}{s^2(z)} \, dz. \]

Therefore, \(P[S = \infty] = 1 \) holds if and only if
\[\int_0^1 \frac{z}{s^2(z)} \, dz = \infty. \]
Feller’s test: special cases

\[v(x) := \int_c^x \left(\int_c^y \exp \left(-2 \int_z^y f(u) \, du \right) \frac{1}{s^2(z)} \, dz \right) \, dy \]

By simplifying \(v(\cdot) \) via Tonelli, criterion of explosions is sometimes easier to check:

- If \(s(\cdot) \) is differentiable and \(b(\cdot) = s'(\cdot)/2 \):
 \[v(x) = \int_c^x \left(\frac{1}{s(y)} \int_c^y \frac{1}{s(z)} \, dz \right) \, dy = \frac{1}{2} \left(\int_c^x \frac{1}{s(z)} \, dz \right)^2. \]

- If \(I = (0, \infty) \) and \(b(\cdot) = 0 \):
 \[v(x) = \int_c^x \frac{x - z}{s^2(z)} \, dz. \]

Therefore, \(P[S = \infty] = 1 \) holds if and only if

\[\int_0^1 \frac{z}{s^2(z)} \, dz = \infty. \]
A diffusion in natural scale

\[X^o(\cdot) = \xi + \int_0^\cdot s(X^o(t))dW^o(t) \]

- Again, a weak solution, unique in the sense of the probability distribution, exists up until an explosion time \(S^o \).
- \(P^o[S^o = \infty] = 1 \) holds if \(\ell = -\infty \) and \(r = \infty \).
Transformation of probability

Theorem (Generalized Girsanov theorem (a special case))

Assume that the mean/variance ratio $f(\cdot)$ is locally square-integrable on I. For any given $T \in (0, \infty)$ and any Borel set $\Delta \in \mathcal{B}_T(C([0, \infty)))$, we have

$$P [X(\cdot) \in \Delta, S > T] = \mathbb{E}^\circ \left[\mathcal{E} \left(\int_0^T b(X^\circ(t)) \, dW^\circ(t) \right) \mathbf{1}_{\{X^\circ(\cdot) \in \Delta, S^\circ > T\}} \right]$$

where $\mathcal{E}(\cdot)$ denotes the stochastic exponential.

- Appears in McKean (1969) under stronger assumptions.
- Local square-integrability of $f(\cdot)$ and occupation time formula yield that

$$\int_0^T b^2(X^\circ(t)) \, dt < \infty$$

on $\{S > T\}$.
- Recall that $\mathcal{E}(\cdot)$ is a local martingale, here on $[0, S^\circ)$.
Transformation of probability

Theorem (Generalized Girsanov theorem (a special case))

Assume that the mean/variance ratio $f(\cdot)$ is locally square-integrable on I. For any given $T \in (0, \infty)$ and any Borel set $\Delta \in \mathcal{B}_T(C([0, \infty)))$, we have

$$P\left[X(\cdot) \in \Delta, S > T \right] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) 1\{X^o(\cdot) \in \Delta, S^o > T\} \right]$$

where $\mathcal{E}(\cdot)$ denotes the stochastic exponential.

- Appears in McKean (1969) under stronger assumptions.
- Local square-integrability of $f(\cdot)$ and occupation time formula yield that
 $$\int_0^T b^2(X^o(t)) \, dt < \infty$$
on $\{S > T\}$.
- Recall that $\mathcal{E}(\cdot)$ is a local martingale, here on $[0, S^o)$.
Transformation of probability

Theorem (Generalized Girsanov theorem (a special case))

Assume that the mean/variance ratio \(f(\cdot) \) is locally square-integrable on \(I \). For any given \(T \in (0, \infty) \) and any Borel set \(\Delta \in \mathcal{B}_T(C([0, \infty))) \), we have

\[
P [X(\cdot) \in \Delta, S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) 1_{\{X^o(\cdot) \in \Delta, S^o > T\}} \right]
\]

where \(\mathcal{E}(\cdot) \) denotes the stochastic exponential.

- Appears in McKean (1969) under stronger assumptions.
- Local square-integrability of \(f(\cdot) \) and occupation time formula yield that

\[
\int_0^T \mathbb{b}^2(X^o(t)) \, dt < \infty
\]
on \(\{S > T\} \).
- Recall that \(\mathcal{E}(\ldots) \) is a local martingale, here on \([0, S^o)\).
Transformation of probability

Theorem (Generalized Girsanov theorem (a special case))

Assume that the mean/variance ratio \(f(\cdot)\) is locally square-integrable on \(I\). For any given \(T \in (0, \infty)\) and any Borel set \(\Delta \in \mathcal{B}_T(C([0, \infty)))\), we have

\[
P [X(\cdot) \in \Delta, S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) \mathbf{1}_{\{X^o(\cdot) \in \Delta, S^o > T\}} \right]
\]

where \(\mathcal{E}(\cdot)\) denotes the stochastic exponential.

- Appears in McKean (1969) under stronger assumptions.
- Local square-integrability of \(f(\cdot)\) and occupation time formula yield that
 \[
 \int_0^T b^2(X^o(t)) \, dt < \infty
 \]
 on \(\{S > T\}\).
- Recall that \(\mathcal{E}(\ldots)\) is a local martingale, here on \([0, S^o)\).
Feynman-Kac representation

- With $\Delta = C([0, T])$:

\[
P[S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) 1\{S > T\} \right].
\]

- Assume for the moment that $f(\cdot)$ is continuously differentiable.
- Denote by $F(\cdot) = \int_c f(x) \, dx$ its antiderivative.
- Then $P[S > T] =$

\[
\exp(-F(\xi)) \cdot \mathbb{E}^o \left[\exp \left(F(X^o(T)) - \int_0^T V(X^o(t)) \, dt \right) \cdot 1\{S > T\} \right],
\]

where $V(x) := \frac{1}{2} (b^2(x) + f'(x)s^2(x))$.

- Thus, the distribution of the explosion time is determined completely by the joint distributions of $X^o(T)$ and $\int_0^T V(X^o(t)) \, dt$ on $\{S > T\}$, for all $T \in (0, \infty)$.

Feynman-Kac representation

• With $\Delta = C([0, T])$:

$$P[S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) \right] \cdot 1_{\{S^o > T\}}.$$

• Assume for the moment that $f(\cdot)$ is continuously differentiable.

• Denote by $F(\cdot) = \int_c^\cdot f(x) \, dx$ its antiderivative.

• Then $P[S > T] =$

$$\exp(-F(\xi)) \cdot \mathbb{E}^o \left[\exp \left(F(X^o(T)) - \int_0^T V(X^o(t)) \, dt \right) \cdot 1_{\{S^o > T\}} \right],$$

where $V(x) := \frac{1}{2} \left(b^2(x) + f'(x)s^2(x) \right)$.

• Thus, the distribution of the explosion time is determined completely by the joint distributions of $X^o(T)$ and $\int_0^T V(X^o(t)) \, dt$ on $\{S^o > T\}$, for all $T \in (0, \infty)$.
Feynman-Kac representation

• With $\Delta = C([0, T])$:

$$P[S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) 1_{\{S^o > T\}} \right].$$

• Assume for the moment that $f(\cdot)$ is continuously differentiable.
• Denote by $F(\cdot) = \int_c^\cdot f(x) \, dx$ its antiderivative.
• Then $P[S > T] =$

$$\exp(-F(\xi)) \cdot \mathbb{E}^o \left[\exp \left(F(X^o(T)) - \int_0^T V(X^o(t)) \, dt \right) \cdot 1_{\{S^o > T\}} \right],$$

where $V(x) := \frac{1}{2} \left(b^2(x) + f'(x)s^2(x) \right).$
• Thus, the distribution of the explosion time is determined completely by the joint distributions of $X^o(T)$ and $\int_0^T V(X^o(t)) \, dt$ on $\{S^o > T\}$, for all $T \in (0, \infty)$.
Feynman-Kac representation

- With $\Delta = C([0, T])$:

$$P[S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) \mathbf{1}_{\{S^o > T\}} \right].$$

- Assume for the moment that $f(\cdot)$ is continuously differentiable.
- Denote by $F(\cdot) = \int_c^\cdot f(x) \, dx$ its antiderivative.
- Then $P[S > T] =$

$$\exp(-F(\xi)) \cdot \mathbb{E}^o \left[\exp \left(F(X^o(T)) - \int_0^T V(X^o(t)) \, dt \right) \cdot \mathbf{1}_{\{S^o > T\}} \right],$$

where $V(x) := \frac{1}{2} \left(b^2(x) + f'(x)s^2(x) \right)$.

- Thus, the distribution of the explosion time is determined completely by the joint distributions of $X^o(T)$ and $\int_0^T V(X^o(t)) \, dt$ on $\{S^o > T\}$, for all $T \in (0, \infty)$.
Feynman-Kac representation

- With $\Delta = C([0, T])$:

$$P[S > T] = \mathbb{E}^o \left[\mathcal{E} \left(\int_0^T b(X^o(t)) \, dW^o(t) \right) 1_{\{S^o > T\}} \right].$$

- Assume for the moment that $f(\cdot)$ is continuously differentiable.
- Denote by $F(\cdot) = \int_c f(x) \, dx$ its antiderivative.
- Then $P[S > T] = \exp(-F(\xi)) \cdot \mathbb{E}^o \left[\exp \left(F(X^o(T)) - \int_0^T V(X^o(t)) \, dt \right) \cdot 1_{\{S^o > T\}} \right],$

where $V(x) := \frac{1}{2} (b^2(x) + f'(x)s^2(x)).$

- Thus, the distribution of the explosion time is determined completely by the joint distributions of $X^o(T)$ and $\int_0^T V(X^o(t)) \, dt$ on $\{S^o > T\}$, for all $T \in (0, \infty).$
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that $s(\cdot)$ is continuously differentiable and $s(\cdot) > 0$.
- Consider the function
 \[h(x) = \int_c^x \frac{1}{s(z)} \, dz. \]
- Then X explodes from $I = (\ell, r)$ exactly when $Y = h(X)$ explodes from $\tilde{I} = (h(\ell), h(r))$.
- Thus, X and Y have the same explosion time S.
- If $b(\cdot) = \nu + s'(\cdot)/2$, then Y takes the simple form
 \[Y(t) = h(\xi) + \nu t + W(t). \]
- Distribution of S for BM with drift is well known.
Transformation of space

• Based on ideas of Lamperti, Doss, Sussmann.
• Assume that $s(\cdot)$ is continuously differentiable and $s(\cdot) > 0$.
• Consider the function

$$h(x) = \int_c^x \frac{1}{s(z)} \, dz.$$

• Then X explodes from $I = (\ell, r)$ exactly when $Y = h(X)$ explodes from $\tilde{I} = (h(\ell), h(r))$.
• Thus, X and Y have the same explosion time S.
• If $b(\cdot) = \nu + s'(\cdot)/2$, then Y takes the simple form

$$Y(t) = h(\xi) + \nu t + W(t).$$

• Distribution of S for BM with drift is well known.
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that \(s(\cdot) \) is continuously differentiable and \(s(\cdot) > 0 \).
- Consider the function

\[
h(x) = \int_{c}^{x} \frac{1}{s(z)} \, dz.
\]

- Then \(X \) explodes from \(I = (\ell, r) \) exactly when \(Y = h(X) \) explodes from \(\tilde{I} = (h(\ell), h(r)) \).
- Thus, \(X \) and \(Y \) have the same explosion time \(S \).
- If \(b(\cdot) = \nu + s'(\cdot)/2 \), then \(Y \) takes the simple form

\[
Y(t) = h(\xi) + \nu t + W(t).
\]
- Distribution of \(S \) for BM with drift is well known.
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that $s(\cdot)$ is continuously differentiable and $s(\cdot) > 0$.
- Consider the function

$$h(x) = \int_c^x \frac{1}{s(z)} \, dz.$$

- Then X explodes from $I = (\ell, r)$ exactly when $Y = h(X)$ explodes from $\tilde{I} = (h(\ell), h(r))$.
- Thus, X and Y have the same explosion time S.
- If $b(\cdot) = \nu + s'(\cdot)/2$, then Y takes the simple form

$$Y(t) = h(\xi) + \nu t + W(t).$$

- Distribution of S for BM with drift is well known.
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that \(s(\cdot) \) is continuously differentiable and \(s(\cdot) > 0 \).
- Consider the function

\[
h(x) = \int_{c}^{x} \frac{1}{s(z)} \, dz.
\]

- Then \(X \) explodes from \(I = (\ell, r) \) exactly when \(Y = h(X) \) explodes from \(\tilde{I} = (h(\ell), h(r)) \).
- Thus, \(X \) and \(Y \) have the same explosion time \(S \).
- If \(b(\cdot) = \nu + \frac{s'(\cdot)}{2} \), then \(Y \) takes the simple form

\[
Y(t) = h(\xi) + \nu t + W(t).
\]

- Distribution of \(S \) for BM with drift is well known.
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that \(s(\cdot) \) is continuously differentiable and \(s(\cdot) > 0 \).
- Consider the function
 \[
 h(x) = \int_c^x \frac{1}{s(z)} \, dz.
 \]
- Then \(X \) explodes from \(I = (\ell, r) \) exactly when \(Y = h(X) \) explodes from \(\tilde{I} = (h(\ell), h(r)) \).
- Thus, \(X \) and \(Y \) have the same explosion time \(S \).
- If \(b(\cdot) = \nu + s'(\cdot)/2 \), then \(Y \) takes the simple form
 \[
 Y(t) = h(\xi) + \nu t + W(t).
 \]
- Distribution of \(S \) for BM with drift is well known.
Transformation of space

- Based on ideas of Lamperti, Doss, Sussmann.
- Assume that $s(\cdot)$ is continuously differentiable and $s(\cdot) > 0$.
- Consider the function

 $$h(x) = \int_c^x \frac{1}{s(z)} \, dz.$$

- Then X explodes from $I = (\ell, r)$ exactly when $Y = h(X)$ explodes from $\tilde{I} = (h(\ell), h(r))$.
- Thus, X and Y have the same explosion time S.
- If $b(\cdot) = \nu + s'(\cdot)/2$, then Y takes the simple form

 $$Y(t) = h(\xi) + \nu t + W(t).$$

- Distribution of S for BM with drift is well known.
Analytic properties

Define the function $U : (0, \infty) \times I \rightarrow [0, 1]$ via

$$U(T, \xi) := P_{\xi}[S > T].$$

Theorem

The function $U(\cdot, \cdot)$ is jointly continuous in $[0, \infty) \times I$.
Define the function $U : (0, \infty) \times I \rightarrow [0, 1]$ via

$$U(T, \xi) := P_\xi[S > T].$$

Theorem

*The function $U(\cdot, \cdot)$ is jointly continuous in $[0, \infty) \times I$.***
Parabolic PDE

\[U(T, \xi) := P_\xi[S > T] \]

Theorem

Assume that the functions \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-continuous on \(I \). Then the function \(U(\cdot, \cdot) \) is of class \(C([0, \infty) \times I) \cap C^{1,2}((0, \infty) \times I) \) and satisfies the Cauchy problem

\[
\frac{\partial U}{\partial \tau} (\tau, x) = \frac{s^2(x)}{2} \frac{\partial^2 U}{\partial x^2} (\tau, x) + b(x)s(x) \frac{\partial U}{\partial x} (\tau, x)
\]

\[U(0, x) = 1. \]

Moreover, the function \(U(\cdot, \cdot) \) is dominated by every nonnegative classical supersolution of that Cauchy problem.
Parabolic PDE

\[U(T, \xi) := P_\xi[S > T] \]

Theorem

Assume that the functions \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-continuous on \(I \). Then the function \(U(\cdot, \cdot) \) is of class \(C([0, \infty) \times I) \cap C^{1,2}((0, \infty) \times I) \) and satisfies the Cauchy problem

\[
\frac{\partial U}{\partial \tau}(\tau, x) = \frac{s^2(x)}{2} \frac{\partial^2 U}{\partial x^2}(\tau, x) + b(x)s(x) \frac{\partial U}{\partial x}(\tau, x)
\]

\[U(0, x) = 1. \]

Moreover, the function \(U(\cdot, \cdot) \) is dominated by every nonnegative classical supersolution of that Cauchy problem.
Second-order ODE

Consider the Laplace transform or “resolvent” of the function $U(\cdot, \xi)$:

$$
\hat{U}_\lambda(\xi) = \int_0^\infty \exp(-\lambda T) U(T, \xi) dT = \frac{1}{\lambda} \left(1 - \mathbb{E}_\xi [\exp(-\lambda S)] \right).
$$

Theorem

If the functions $b(\cdot)$ and $s(\cdot)$ are continuous on I, then the function $\hat{U}_\lambda(\xi)$ is of class $C^2(I)$ and satisfies the second-order ordinary differential equation

$$
\frac{s^2(x)}{2} u''(x) + b(x)s(x)u'(x) - \lambda u(x) + 1 = 0, \quad x \in I.
$$

Moreover, the function $\hat{U}_\lambda(\cdot)$ is dominated by every nonnegative classical supersolution of this second-order ODE.
Second-order ODE

Consider the Laplace transform or “resolvent” of the function $U(\cdot, \xi)$:

$$\hat{U}_\lambda(\xi) = \int_0^\infty \exp(-\lambda T) U(T, \xi) \, dT = \frac{1}{\lambda} \left(1 - \mathbb{E}_\xi \left[\exp(-\lambda S) \right] \right).$$

Theorem

*If the functions $b(\cdot)$ and $s(\cdot)$ are continuous on I, then the function $\hat{U}_\lambda(\xi)$ is of class $C^2(I)$ and satisfies the second-order ordinary differential equation

$$\frac{s^2(x)}{2} u''(x) + b(x) s(x) u'(x) - \lambda u(x) + 1 = 0, \quad x \in I.$$

Moreover, the function $\hat{U}_\lambda(\cdot)$ is dominated by every nonnegative classical supersolution of this second-order ODE.*
Second-order ODE

Consider the Laplace transform or “resolvent” of the function $U(\cdot, \xi)$:

$$
\hat{U}_\lambda(\xi) = \int_0^\infty \exp(-\lambda T) U(T, \xi) dT = \frac{1}{\lambda} (1 - \mathbb{E}_\xi [\exp(-\lambda S)]) .
$$

Theorem

If the functions $b(\cdot)$ and $s(\cdot)$ are continuous on I, then the function \(\hat{U}_\lambda(\xi)\) is of class $C^2(I)$ and satisfies the second-order ordinary differential equation

$$
\frac{s^2(x)}{2} u''(x) + b(x)s(x)u'(x) - \lambda u(x) + 1 = 0, \quad x \in I.
$$

Moreover, the function $\hat{U}_\lambda(\cdot)$ is dominated by every nonnegative classical supersolution of this second-order ODE.
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) \(P[S = \infty] = 1 \).

(ii) \(v(\ell+) = v(r-) = \infty \) for the “Feller test” function \(v \).

If \(f(\cdot) \) is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential \(P^o \)-supermartingale
\[
\mathcal{E} \left(\int_0^T b(X^o(t))dW^o(t) \right) \cdot 1\{S^o > T\} \text{ is a } P^o \text{-martingale.}
\]

If \(s(\cdot) \) and \(b(\cdot) \) are continuous on \(I \), (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is \(u(\cdot) \equiv 1/\lambda \).

If \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is \(U(\cdot, \cdot) \equiv 1 \).

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

1. \(P[S = \infty] = 1 \).
2. \(\nu(\ell^+) = \nu(r^-) = \infty \) for the “Feller test” function \(\nu \).

If \(f(\cdot) \) is locally square-integrable, (i)-(ii) are equivalent to:

3. the truncated exponential \(P^\circ \)-supermartingale

\[
\mathcal{E} \left(\int_0^T b(X^\circ(t)) dW^\circ(t) \right) \cdot 1_{\{S^\circ > T\}} \text{ is a } P^\circ \text{-martingale.}
\]

If \(s(\cdot) \) and \(b(\cdot) \) are continuous on \(I \), (i)–(iii) are equivalent to:

4. the smallest nonnegative classical solution of the second-order differential equation above is \(u(\cdot) \equiv 1/\lambda \).

If \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

5. the smallest nonnegative classical solution of the Cauchy problem above is \(U(\cdot, \cdot) \equiv 1 \).

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) $P[S = \infty] = 1$.

(ii) $v(\ell+) = v(r-) = \infty$ for the “Feller test” function v.

If $f(\cdot)$ is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential P^o-supermartingale

$$E \left(\int_0^T b(X^o(t))dW^o(t) \right) \cdot 1\{S^o>T\} \text{ is a } P^o\text{-martingale.}$$

If $s(\cdot)$ and $b(\cdot)$ are continuous on I, (i)-(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is $u(\cdot) \equiv 1/\lambda$.

If $s(\cdot)$ and $b(\cdot)$ are locally uniformly Hölder-cont., (i)-(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is $U(\cdot, \cdot) \equiv 1$.

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) \(P[S = \infty] = 1 \).

(ii) \(v(\ell +) = v(r-) = \infty \) for the “Feller test” function \(v \).

If \(f(\cdot) \) is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential \(P^o \)-supermartingale
\[
\mathcal{E} \left(\int_0^T b(X^o(t))dW^o(t) \right) \cdot 1_{\{S^o > T\}} \text{ is a } P^o \text{-martingale.}
\]

If \(s(\cdot) \) and \(b(\cdot) \) are continuous on \(I \), (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is \(u(\cdot) \equiv 1/\lambda \).

If \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is \(U(\cdot, \cdot) \equiv 1 \).

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) $P[S = \infty] = 1$.

(ii) $\nu(\ell^+) = \nu(r^-) = \infty$ for the “Feller test” function ν.

If $f(\cdot)$ is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential P^o-supermartingale

$$\mathcal{E} \left(\int_0^T b(X^o(t))dW^o(t) \right) \cdot 1\{S^o > T\}$$

is a P^o-martingale.

If $s(\cdot)$ and $b(\cdot)$ are continuous on I, (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is $u(\cdot) \equiv 1/\lambda$.

If $s(\cdot)$ and $b(\cdot)$ are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is $U(\cdot, \cdot) \equiv 1$.

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) $P[S = \infty] = 1$.

(ii) $\nu(\ell+) = \nu(r-) = \infty$ for the “Feller test” function ν.

If $f(\cdot)$ is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential P^0-supermartingale

$$E \left(\int_0^T b(X^0(t))dW^0(t) \right) \cdot 1\{S^0 > T\}$$

is a P^0-martingale.

If $s(\cdot)$ and $b(\cdot)$ are continuous on I, (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is $u(\cdot) \equiv 1/\lambda$.

If $s(\cdot)$ and $b(\cdot)$ are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is $U(\cdot, \cdot) \equiv 1$.

Circular proof??
Equivalent formulations for the Feller test

Theorem (Equivalence of the following conditions)

(i) \(P[S = \infty] = 1 \).

(ii) \(v(\ell^+)=v(r^-)=\infty \) for the “Feller test” function \(v \).

If \(f(\cdot) \) is locally square-integrable, (i)-(ii) are equivalent to:

(iii) the truncated exponential \(P^o \)-supermartingale
\[
\mathcal{E} \left(\int_0^T b(X^o(t))dW^o(t) \right) \cdot 1\{S^o>T\} \text{ is a } P^o\text{-martingale.}
\]

If \(s(\cdot) \) and \(b(\cdot) \) are continuous on \(I \), (i)–(iii) are equivalent to:

(iv) the smallest nonnegative classical solution of the second-order differential equation above is \(u(\cdot) \equiv 1/\lambda \).

If \(s(\cdot) \) and \(b(\cdot) \) are locally uniformly Hölder-cont., (i)–(iv) a.e.to:

(v) the smallest nonnegative classical solution of the Cauchy problem above is \(U(\cdot, \cdot) \equiv 1 \).

Circular proof??
Example (slightly cheating)

With \(I = (0, \infty) \), \(\kappa \in [1/2, \infty) \), consider

\[
X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \kappa \int_0^\cdot (X(t))^3 dt.
\]

- Corresponds to \(s(x) = -x^2 \) and \(b(x) = -\kappa x \).
- Thus, by the Feynman-Kac representation,

\[
P[S > T] = \mathbb{E}^\circ \left[\left(\frac{X^\circ(T)}{\xi} \right)^\kappa \exp \left(-\frac{\kappa^2 - \kappa}{2} \int_0^T (X^\circ(t))^2 dt \right) \right]
= \frac{1}{T} \xi^{-\nu} \exp \left(-\frac{1}{2T \xi^2} \right) \int_0^\infty x^{1-\nu} \exp \left(-\frac{x^2}{2T} \right) I_\nu \left(\frac{x}{\xi T} \right) dx,
\]

where \(\nu := \kappa - 1/2 \).
- This is the smallest nonnegative solution of

\[
\frac{\partial U}{\partial \tau}(\tau, x) = \frac{x^4}{2} \frac{\partial^2 U}{\partial x^2}(\tau, x) + \kappa x^3 \frac{\partial U}{\partial x}(\tau, x)
\]

subject to \(U(0+, x) = 1 \).
Example (slightly cheating)

With \(I = (0, \infty), \kappa \in [1/2, \infty) \), consider

\[
X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \kappa \int_0^\cdot (X(t))^3 dt.
\]

- Corresponds to \(s(x) = -x^2 \) and \(b(x) = -\kappa x \).
- Thus, by the Feynman-Kac representation,

\[
P[S > T] = \mathbb{E}^\circ \left[\left(\frac{X^o(T)}{\xi} \right)^\kappa \exp \left(-\frac{\kappa^2}{2} \int_0^T (X^o(t))^2 dt \right) \right]
= \frac{1}{T} \xi^{-\nu} \exp \left(-\frac{1}{2T \xi^2} \right) \int_0^\infty x^{1-\nu} \exp \left(-\frac{x^2}{2T} \right) I_\nu \left(\frac{x}{\xi T} \right) dx,
\]

where \(\nu := \kappa - 1/2 \).
- This is the smallest nonnegative solution of

\[
\frac{\partial U}{\partial \tau} (\tau, x) = \frac{x^4}{2} \frac{\partial^2 U}{\partial x^2} (\tau, x) + \kappa x^3 \frac{\partial U}{\partial x} (\tau, x)
\]

subject to \(U(0+, x) \equiv 1 \).
Example (slightly cheating)

With \(I = (0, \infty) \), \(\kappa \in [1/2, \infty) \), consider

\[
X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \kappa \int_0^\cdot (X(t))^3 dt.
\]

- Corresponds to \(s(x) = -x^2 \) and \(b(x) = -\kappa x \).
- Thus, by the Feynman-Kac representation,

\[
P[S > T] = \mathbb{E}^o \left[\left(\frac{X^o(T)}{\xi} \right)^\kappa \exp \left(-\frac{\kappa^2 - \kappa}{2} \int_0^T (X^o(t))^2 dt \right) \right]
= \frac{1}{T} \xi^{-\nu} \exp \left(\frac{-1}{2 T \xi^2} \right) \int_0^\infty x^{1-\nu} \exp \left(\frac{-x^2}{2 T} \right) I_\nu \left(\frac{x}{\xi} \frac{T}{\xi} \right) dx,
\]

where \(\nu := \kappa - 1/2 \).

- This is the smallest nonnegative solution of

\[
\frac{\partial U}{\partial \tau}(\tau, x) = \frac{x^4}{2} \frac{\partial^2 U}{\partial x^2}(\tau, x) + \kappa x^3 \frac{\partial U}{\partial x}(\tau, x)
\]

subject to \(U(0+, x) \equiv 1 \).
Example (slightly cheating)

With $I = (0, \infty)$, $\kappa \in [1/2, \infty)$, consider

$$X(\cdot) = \xi - \int_0^\cdot (\mathcal{X}(t))^2 dW(t) + \kappa \int_0^\cdot (\mathcal{X}(t))^3 dt.$$

- Corresponds to $s(x) = -x^2$ and $b(x) = -\kappa x$.
- Thus, by the Feynman-Kac representation,

$$P[S > T] = \mathbb{E}^\circ \left[\left(\frac{\mathcal{X}^\circ(T)}{\xi} \right)^\kappa \exp \left(-\frac{\kappa^2 - \kappa}{2} \int_0^T (\mathcal{X}^\circ(t))^2 dt \right) \right]$$

$$= \frac{1}{T} \xi^{-\nu} \exp \left(-\frac{1}{2T\xi^2} \right) \int_0^\infty x^{1-\nu} \exp \left(\frac{-x^2}{2T} \right) I_\nu \left(\frac{x}{\xi T} \right) dx,$$

where $\nu := \kappa - 1/2$.
- This is the smallest nonnegative solution of

$$\frac{\partial U}{\partial \tau} (\tau, x) = \frac{x^4}{2} \frac{\partial^2 U}{\partial x^2} (\tau, x) + \kappa x^3 \frac{\partial U}{\partial x} (\tau, x)$$

subject to $U(0+, x) \equiv 1.$
Special case of example

Set $\kappa = 1$:

$$X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \int_0^\cdot (X(t))^3 dt.$$

- Here:

$$P[S > T] = 2 \int_0^{1/(\xi \sqrt{T})} \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{r^2}{2} \right) \, dr.$$

- Observe that

$$dX(t) = s(X(t)) \left(dW(t) + \frac{1}{2} s'(X(t)) dt \right), \quad X(0) = \xi.$$

- Thus, we can express X pathwise as

$$X(t) = \frac{1}{W(t) + (1/\xi)}, \quad 0 \leq t < S.$$
Special case of example

Set $\kappa = 1$:

$$X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \int_0^\cdot (X(t))^3 dt.$$

- Here:
 $$P[S > T] = 2 \int_0^{1/(\xi \sqrt{T})} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{r^2}{2} \right) dr.$$

- Observe that
 $$dX(t) = s(X(t)) \left(dW(t) + \frac{1}{2} s'(X(t)) dt \right), \quad X(0) = \xi.$$

- Thus, we can express X pathwise as
 $$X(t) = \frac{1}{W(t) + (1/\xi)}, \quad 0 \leq t < S.$$
Special case of example

Set $\kappa = 1$:

$$X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \int_0^\cdot (X(t))^3 dt.$$

- Here:
 $$P[S > T] = 2 \int_0^{1/(\xi \sqrt{T})} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{r^2}{2} \right) dr.$$

- Observe that
 $$dX(t) = s(X(t)) \left(dW(t) + \frac{1}{2}s'(X(t))dt \right), \quad X(0) = \xi.$$

- Thus, we can express X pathwise as
 $$X(t) = \frac{1}{W(t) + (1/\xi)}, \quad 0 \leq t < S.$$
Special case of example

Set $\kappa = 1$:

$$X(\cdot) = \xi - \int_0^\cdot (X(t))^2 dW(t) + \int_0^\cdot (X(t))^3 dt.$$

- Here:

$$P[S > T] = 2 \int_0^{1/(\xi \sqrt{T})} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{r^2}{2}\right) dr.$$

- Observe that

$$dX(t) = s(X(t)) \left(dW(t) + \frac{1}{2}s'(X(t))dt\right), \quad X(0) = \xi.$$

- Thus, we can express X pathwise as

$$X(t) = \frac{1}{W(t) + (1/\xi)}, \quad 0 \leq t < S.$$
Thank you!