Dynamic Programming for Mean Field Control with Numerical Applications

Mathieu LAURIÈRE

joint work with Olivier Pironneau

University of Michigan, January 25, 2017
Mean Field Control

Mathieu LAURIÈRE

joint work with Olivier Pironneau

University of Michigan, January 25, 2017
Dynamic Programming for Mean Field Control

Mathieu LAURIÈRE

joint work with Olivier Pironneau

University of Michigan, January 25, 2017
Dynamic Programming for Mean Field Control with Numerical Applications

Mathieu LAURIÈRE

joint work with Olivier Pironneau

University of Michigan, January 25, 2017
Outline

1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Outline

1. Mean field control and mean field games
 - Mean field type control problems
 - Comparison with mean field games

2. Dynamic programming for MFC

3. Numerical example 1: oil production

4. Numerical example 2: Bertrand equilibrium

5. Conclusion
Mean field control and mean field games
 Mean field type control problems
 Comparison with mean field games

Dynamic programming for MFC

Numerical example 1: oil production

Numerical example 2: Bertrand equilibrium

Conclusion
A stochastic control problem is typically defined by:

Cost function (running cost L, final cost h, control v, time horizon T)

$$\mathcal{J}(v) = \mathbb{E} \left[\int_0^T L(t, X_t^v, v_t) dt + h(X_T^v) \right]$$

Dynamics (drift g, volatility σ, Brownian motion W)

Let X^v be a solution of

$$dX_t^v = g(t, X_t^v, v_t) dt + \sigma dW_t,$$
Optimal Control (formal)

A stochastic control problem is typically defined by:

<table>
<thead>
<tr>
<th>Cost function</th>
<th>(running cost L, final cost h, control v, time horizon T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J(v) = \mathbb{E} \left[\int_0^T L(t, X_t^v, v_t) dt + h(X_T^v) \right]$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dynamics</th>
<th>(drift g, volatility σ, Brownian motion W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let X^v be a solution of</td>
<td></td>
</tr>
<tr>
<td>$dX_t^v = g(t, X_t^v, v_t) dt + \sigma dW_t,$</td>
<td></td>
</tr>
</tbody>
</table>

Control Problem: Minimise $J(v)$

i.e., find \hat{v} such that $J(\hat{v}) \leq J(v)$, for all control v
Optimal Control (formal)

A stochastic control problem is typically defined by:

Cost function (running cost L, final cost h, control v, time horizon T)
\[
J(v) = \mathbb{E} \left[\int_0^T L(t, X_t^v, v_t) dt + h(X_T^v) \right]
\]

Dynamics (drift g, volatility σ, Brownian motion W)
Let X^v be a solution of
\[
dX_t^v = g(t, X_t^v, v_t) dt + \sigma dW_t,
\]

Control Problem: Minimise $J(v)$
\[i.e., \text{find } \hat{v} \text{ such that } J(\hat{v}) \leq J(v), \text{ for all control } v\]

Remark: the state is given by X^v
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_tX_t + (\alpha_t - r_t)v_t)dt + v_t dW_t, \quad X_0 = x_0 \text{ given},$$

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

$$\begin{cases}
 dS_t = \alpha_t S_t dt + S_t dW_t, & S_0 \text{ given}, \\
 dB_t = r_t B_t dt, & B_0 \text{ given}.
\end{cases}$$

Let T be a finite time horizon.
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_tX_t + (\alpha_t - r_t)v_t)dt + v_t dW_t, \quad X_0 = x_0 \text{ given},$$

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

$$\begin{cases}
 dS_t = \alpha_t S_t dt + S_t dW_t, & S_0 \text{ given}, \\
 dB_t = r_t B_t dt, & B_0 \text{ given}.
\end{cases}$$

Let T be a finite time horizon.

The goal is to maximise

$$\mathcal{J}(v)$$

1 [Andersson-Djehiche]
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_t X_t + (\alpha_t - r_t)v_t)dt + v_t dW_t, \quad X_0 = x_0 \text{ given},$$

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

\[
\begin{align*}
 dS_t &= \alpha_t S_t dt + S_t dW_t, \quad S_0 \text{ given,} \\
 dB_t &= r_t B_t dt, \quad B_0 \text{ given.}
\end{align*}
\]

Let T be a finite time horizon.

The goal is to maximise

$$J(v) = \mathbb{E}[X_T] - \text{Var}(X_T)$$
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_t X_t + (\alpha_t - r_t) v_t) dt + v_t dW_t, \quad X_0 = x_0 \text{ given},$$

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

$$\begin{align*}
 dS_t &= \alpha_t S_t dt + S_t dW_t, \quad S_0 \text{ given}, \\
 dB_t &= r_t B_t dt, \quad B_0 \text{ given}.
\end{align*}$$

Let T be a finite time horizon.

The goal is to maximise

$$J(v) = \mathbb{E}[X_T] - \text{Var}(X_T)$$

$$= \mathbb{E}[X_T] - \mathbb{E}[(X_T)^2] + (\mathbb{E}[X_T])^2$$

1[Andersson-Djehiche]
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_tX_t + (\alpha_t - r_t)v_t)dt + v_t dW_t, \quad X_0 = x_0 \text{ given},$$

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

$$\begin{cases}
 dS_t = \alpha_t S_t dt + S_t dW_t, & S_0 \text{ given,} \\
 dB_t = r_t B_t dt, & B_0 \text{ given.}
\end{cases}$$

Let T be a finite time horizon.

The goal is to maximise

$$\mathcal{J}(v) = \mathbb{E}[X_T] - \text{Var}(X_T)$$

$$= \mathbb{E}[X_T] - \mathbb{E}[(X_T)^2] + (\mathbb{E}[X_T])^2$$

$$= \mathbb{E}[X_T - (X_T)^2] + (\mathbb{E}[X_T])^2$$

non-linear in \mathbb{E}

1 [Andersson-Djehiche]
Example: Min-variance portfolio selection

Let X_t be the value of a self-financing portfolio, with dynamics

$$dX_t = (r_t X_t + (\alpha_t - r_t) v_t) dt + v_t dW_t,$$

$X_0 = x_0$ given,

investing v_t in a risky asset S_t and the rest in a non-risky asset B_t:

$$\begin{cases}dS_t = \alpha_t S_t dt + S_t dW_t, & S_0 \text{ given,} \\
 dB_t = r_t B_t dt, & B_0 \text{ given.}
\end{cases}$$

Let T be a finite time horizon.

The goal is to maximise

$$J(v) = \mathbb{E}[X_T] - \text{Var}(X_T)$$

$$= \mathbb{E}[X_T] - \mathbb{E}[(X_T)^2] + (\mathbb{E}[X_T])^2$$

$$= \mathbb{E}[X_T - (X_T)^2] + (\mathbb{E}[X_T])^2$$

$$\quad \text{non-linear in } \mathbb{E}$$

$$J(v) = \mathbb{E} \left[X_T - (X_T)^2 + (\mathbb{E}[X_T])^2 \right]$$

[1][Andersson-Djehiche]
Mean Field Control: definition (formal)

A problem of mean field control (MFC) or control of McKean-Vlasov (MKV) dynamics consists in:

Cost function (running cost L, final cost h, control v, time horizon T)

$$
J(v) = \mathbb{E} \left[\int_0^T L[m_{X^v}(t, X^v_t, v_t)] dt + h[m_{X^v_T}(X^v_T)] \right]
$$

Dynamics (drift g, volatility σ, Brownian motion W)

Let X^v be a solution of the *controlled MKV equation*

$$
\begin{aligned}
 dX^v_t &= g[m_{X^v_t}(t, X^v_t, v_t)] dt + \sigma dW_t, \\
 m_{X^0} &= m_0 \text{ given},
\end{aligned}
$$

where $m_{X^v_t}$ is the distribution of X^v_t.

2 [Bensoussan-Frehse-Yam]
3 [Carmona-Delarue]
Mean Field Control: definition (formal)

A problem of mean field control (MFC) or control of McKean-Vlasov (MKV) dynamics consists in:

Cost function (running cost L, final cost h, control v, time horizon T)

$$
J(v) = \mathbb{E} \left[\int_0^T L[m_{X^v_t}](t, X^v_t, v_t) dt + h[m_{X^v_T}](X^v_T) \right]
$$

Dynamics (drift g, volatility σ, Brownian motion W)

Let X^v be a solution of the controlled MKV equation

$$
\begin{align*}
 dX^v_t &= g[m_{X^v_t}](t, X^v_t, v_t) dt + \sigma dW_t, \\
 m_{X_0} &= m_0 \text{ given,}
\end{align*}
$$

where m_{X_t} is the distribution of X^v_t.

MFTC Problem: Minimise $J(v)$

i.e., find \hat{v} such that $J(\hat{v}) \leq J(v)$, for all control v
Outline

1. Mean field control and mean field games
 - Mean field type control problems
 - Comparison with mean field games

2. Dynamic programming for MFC

3. Numerical example 1: oil production

4. Numerical example 2: Bertrand equilibrium

5. Conclusion
MFC vs MFG: motivations

Mean field control (MFC) problem

(1) typical agent optimizing a cost depending on the state distribution
 ⇒ risk management, . . .

(2) collaborative equilibrium with a continuum of agents
 ⇒ distributed robotics, . . .
MFC vs MFG: motivations

Mean field control (MFC) problem

1. typical agent optimizing a cost depending on the state distribution
 ⇒ risk management, . . .

2. collaborative equilibrium with a continuum of agents
 ⇒ distributed robotics, . . .

Mean field game (MFG)

Nash equilibrium in a game with a continuum of agents
 ⇒ economy, sociology, . . .
MFC vs MFG: frameworks

Minimise $J(v, \mu) = \mathbb{E} \left[\int_0^T L[\mu_t](t, X_t^v, \nu_t) dt + h[\mu_T](X_T^v) \right]$
MFC vs MFG: frameworks

Minimise \(J(v, \mu) = \mathbb{E} \left[\int_0^T L[\mu_t](t, X^v_t, v_t)\,dt + h[\mu_T](X^v_T) \right] \)

MFC problem

Find \(\hat{v} \) such that

\[J \left(\hat{v}, m_{X^\hat{v}} \right) \leq J \left(v, m_{X^v} \right), \quad \forall v \]

where \(X^v \) satisfies

\[dX_t = g \left[m_{X^v_t} \right] (t, X_t, v_t)\,dt + \sigma dW_t, \quad m_{X_0} = m_0, \]

and \(m_{X^v_t} \) is the distribution of \(X^v_t \).

\[[\text{Bensoussan-Frehse-Yam, Carmona-Delarue}] \]
MFC vs MFG: frameworks

Minimise \(\mathcal{J}(v, \mu) = \mathbb{E} \left[\int_0^T L[\mu_t](t, X^v_t, v_t)dt + h[\mu_T](X^v_T) \right] \)

MFC problem

Find \(\hat{v} \) such that
\[
\mathcal{J} \left(\hat{v}, m_{X^\hat{v}} \right) \leq \mathcal{J} \left(v, m_{X^v} \right), \quad \forall v
\]
where \(X^v \) satisfies
\[
dX_t = g \left[m_{X^v} \right](t, X_t, v_t)dt + \sigma dW_t, \quad m_{X_0} = m_0,
\]
and \(m_{X^v} \) is the distribution of \(X^v_t \).

MFG

Find \((\hat{v}, \mu)\) such that
\[
\mathcal{J} \left(\hat{v}, \mu \right) \leq \mathcal{J} \left(v, \mu \right), \quad \forall v
\]
where

(i) \(X_{\mu}^{\hat{v}} \) satisfies
\[
dX_t = g[\mu_t](t, X_t, \hat{v}_t)dt + \sigma dW_t, \quad m_{X_0} = m_0,
\]
(ii) \(\mu \) coincides with \(m_{X_{\mu}^{\hat{v}}} \).

\[\text{[Bensoussan-Frehse-Yam, Carmona-Delarue]}\]
Outline

1. Mean field control and mean field games

2. Dynamic programming for MFC
 - Dynamic programming principle
 - Link with calculus of variations

3. Numerical example 1: oil production

4. Numerical example 2: Bertrand equilibrium

5. Conclusion
Outline

1. Mean field control and mean field games

2. Dynamic programming for MFC
 - Dynamic programming principle
 - Link with calculus of variations

3. Numerical example 1: oil production

4. Numerical example 2: Bertrand equilibrium

5. Conclusion
Formulation with **McKean-Vlasov dynamics:**

\[
\mathcal{J}(v) = \mathbb{E} \left[\int_0^T L[m_{X_t^v}](t, X_t, v_t)dt + h[m_{X_T^v}](X_T) \right]
\]

where

\[
\begin{cases}
 dX_t^v = g[m_{X_t^v}](v_t)dt + \sigma dW_t \\
 X_0 \text{ given}
\end{cases}
\]

and \(m_{X_t^v}\) is the distribution of \(X_t^v\).
MFC rewritten

Formulation with McKean-Vlasov dynamics:

\[\mathcal{J}(v) = \mathbb{E} \left[\int_0^T L[m_{X_t}^v](t, X_t, v_t) dt + h[m_{X_T}^v](X_T) \right] \]

where

\[\begin{align*}
 \frac{dX_t^v}{dt} &= g[m_{X_t}^v](v_t) dt + \sigma dW_t \\
 X_0 &\text{ given}
\end{align*} \]

and \(m_{X_t}^v \) is the distribution of \(X_t^v \).

We can see the distribution as part of the state:

Formulation with Fokker-Planck PDE:

\[\mathcal{J}(v) = \int \int_0^T L[m^v(t, \cdot)](t, x, v_t) m^v(t, x) dt dx + \int h[m^v(T, \cdot)](x) dx \]

where

\[\begin{align*}
 \partial_t m^v - \frac{\sigma^2}{2} \Delta m^v + \text{div} \left(m^v g[m^v](v) \right) &= 0 \\
 m^v(0, x) &= m_0(x) \quad \text{given.}
\end{align*} \]
Dynamic Programming Principle

Let $V[m_\tau](\tau) = \min_v J(\tau, v)$ (problem starting τ).

Theorem (Dynamic Programming Principle)

For all $\tau \in [0, T]$ and all $m_\tau \geq 0$ on \mathbb{R}:

$V[m_\tau^v](\tau) = \min_v \left\{ \int_\tau^{\tau+\delta \tau} \int_\mathbb{R} L[m^v(t, \cdot)](t, x, v_t)m^v(t, x)dxdt + V[m_\tau^v+\delta \tau](\tau + \delta \tau) \right\}$

\[
\begin{align*}
\partial_t m^v - \frac{\sigma^2}{2} \Delta m^v + \text{div} \left(m^v g[m^v](v) \right) &= 0 \\
m^v(0, x) &= m_0(x) \quad \text{given.}
\end{align*}
\]
Dynamic Programming Principle

Let $V[m_{\tau}](\tau) = \min_v J(\tau, v)$ (problem starting τ).

Theorem (Dynamic Programming Principle)

For all $\tau \in [0, T]$ and all $m_\tau \geq 0$ on \mathbb{R}:

$$V[m^\nu_\tau](\tau) = \min_v \left\{ \int_\tau^{\tau+\delta\tau} \int_\mathbb{R} L[m^\nu(t, \cdot)](t, x, v_t)m^\nu(t, x)dxdt + V[m^\nu_{\tau+\delta\tau}](\tau + \delta\tau) \right\}$$

$$\begin{cases}
\partial_t m^\nu - \frac{\sigma^2}{2} \Delta m^\nu + \text{div} \left(m^\nu g[m^\nu](v) \right) = 0 \\
m^\nu(0, x) = m_0(x) \quad \text{given.}
\end{cases}$$

Assume that V and L are Fréchet differentiable in m.

Theorem (Hamilton-Jacobi-Bellman minimum principle)

Let $\partial_m V$ be the Fréchet derivative of V and V' be its Riesz representation:

$$\int_{\mathbb{R}^d} V'[m](\tau)(x)\nu(x)dx = \partial_m V[m](\tau) \cdot \nu, \quad \forall \nu \in L^2.$$

If V' is smooth enough,

$$\min_v \int_\mathbb{R} \left(L[m^\nu_\tau](x, \tau, v) + \partial_m L[m^\nu_\tau](x, \tau, v) \cdot m^\nu_\tau + \partial_\tau V' + \frac{\sigma^2}{2} \partial_{xx} V' + v \cdot \partial_x V' \right)m^\nu_\tau dx = 0$$
Proof of HJB min. principle (formal) 1/2

A first order approximation of the time derivative in the FP eq. yields:

$$\delta_\tau m := m_{\tau + \delta_\tau} - m_\tau = \delta_\tau \left[\frac{\sigma^2}{2} \Delta m_\tau - \text{div}(v_\tau m_\tau) \right] + o(\delta_\tau). \quad (1)$$

As V is assumed to be smooth, we have:

$$V[m_{\tau + \delta_\tau}](\tau + \delta_\tau) = V[m_\tau](\tau) + \partial_\tau V[m_\tau](\tau) \delta_\tau + \partial_m V[m_\tau](\tau) \cdot \delta_\tau m + o(\delta_\tau). \quad (2)$$

Then, by Bellman's principle

$$V[m_\tau](\tau) \simeq \min_v \left\{ \delta_\tau \int_{\mathbb{R}^d} L[m_\tau]m_\tau \, dx + V[m_\tau](\tau) + \partial_\tau V[m_\tau](\tau) \delta_\tau + \partial_m V[m_\tau](\tau) \cdot \delta_\tau m \right\}. \quad (3)$$

Divided by δ_τ and combined with (1), letting $\delta_\tau \to 0$ gives

$$0 = \min_v \left\{ \int_{\mathbb{R}^d} L[m_\tau]m_\tau \, dx + \partial_\tau V[m_\tau](\tau) + \partial_m V[m_\tau](\tau) \cdot \left[\frac{\sigma^2}{2} \Delta m_\tau - \text{div}(v_\tau m_\tau) \right] \right\}. \quad (4)$$

To finalize the proof we need to relate V to $\partial_m V$.

M. Laurière
DPP for MFC
8 / 29
Proposition

Let \((\hat{v}, \hat{m})\) denote an optimal solution to the problem starting from \(m_\tau\) at time \(\tau\). Then:

\[
\int_{\mathbb{R}^d} V'[m_\tau](\tau) m_\tau \, dx = V[m_\tau](\tau) + \int_\tau^T \int_{\mathbb{R}^d} \left(\partial_m L[\hat{m}_t](x, t, \hat{v}) \cdot \hat{m}_t \right) \hat{m}_t \, dx \, dt \\
+ \int_{\mathbb{R}^d} \left(\partial_m h[\hat{m}_T](x) \cdot \hat{m}_T \right) \hat{m}_T \, dx.
\]

Differentiating with respect to \(\tau\) leads to

\[
\partial_\tau V[m_\tau](\tau) = \int_{\mathbb{R}^d} \partial_\tau V'[m_\tau](\tau) m_\tau \, dx + \int_{\mathbb{R}^d} \left(\partial_m L[m_\tau](x, \tau, \hat{v}_\tau) \cdot m_\tau \right) m_\tau \, dx,
\]

where \(\hat{v}_\tau\) is the optimal control at time \(\tau\). Now, let us use (4), rewritten as

\[
0 = \min_{u_\tau} \left\{ \int_{\mathbb{R}^d} \left(L[m_\tau](x, \tau, u_\tau(x)) + \partial_m L[m_\tau](x, \tau, u_\tau(x)) \cdot m_\tau \right) m_\tau \, dx \\
+ \int_{\mathbb{R}^d} \left(\partial_\tau V'[m_\tau](\tau) m_\tau + V'[m_\tau](\tau) \left[\frac{\sigma^2}{2} \Delta m_\tau - \text{div}(u_\tau m_\tau) \right] \right) \, dx \right\}.
\]

Integrating by parts the last term concludes the proof.
Outline

1. Mean field control and mean field games

2. Dynamic programming for MFC
 - Dynamic programming principle
 - Link with calculus of variations

3. Numerical example 1: oil production

4. Numerical example 2: Bertrand equilibrium

5. Conclusion
Dynamic Programming in a specific setting

\[
\min_{\nu} \int_{\mathbb{R}} \left(L[m_\tau](x, \tau, \nu) + \partial_m L[m_\tau](x, \tau, \nu) \cdot m_\tau + \partial_\tau V' + \frac{\sigma^2}{2} \partial_{xx} V' + \nu \cdot \partial_x V' \right) m_\tau \, dx = 0
\]

Assume \(L = \tilde{L}(x, t, \nu, m_t(x), \chi(t)) \) with \(\chi(t) = \int_{\mathbb{R}^d} \tilde{h}(x, t, \nu(x, t), m_t(x)) m_t(x) \, dx \).

Then for all \(\nu \in L^2 \):

\[
\partial_m L[m_t](x, t, u) \cdot \nu = \partial_m \tilde{L} \nu + \left(\int_{\mathbb{R}^d} \partial_\chi \tilde{L} \nu \, dx \right) \tilde{h} + \left(\int_{\mathbb{R}^d} \partial_\chi \tilde{L} m_t \, dx \right) \nu \partial_m \tilde{h}.
\]

In particular, for \(\nu = m_t \) we have:

\[
\partial_m L[m_t](x, t, u) \cdot m_t = \partial_m \tilde{L} m_t + \left(\int_{\mathbb{R}^d} \partial_\chi \tilde{L} m_t \, dx \right) (\tilde{h} + m_t \partial_m \tilde{h}).
\]

Thus, for optimal \(\hat{\nu} \) and \(\hat{m} \),

\[
\partial_t V' + \frac{\sigma^2}{2} \partial_{xx} V' + \hat{\nu} \cdot \partial_x V' = - \left[\tilde{L} + \hat{m} \partial_m \tilde{L} + (\tilde{h} + \hat{m} \partial_m \tilde{h}) \int_{\mathbb{R}^d} \partial_\chi \tilde{L} \hat{m} \, dx \right]
\]

where \(\partial_m \tilde{L}, \partial_\chi \tilde{L}, \) and \(\partial_m \tilde{h} \) are partial derivatives in the classical sense.
Recall: $L = \tilde{L}(x, t, v, m_t(x), \chi(t))$ with $\chi(t) = \int_{\mathbb{R}^d} \tilde{h}(x, t, v(x, t), m_t(x))m_t(x)dx$.

Theorem (calculus of variations)

\hat{v} and \hat{m} are optimal only if for all t and v,

$$
\int_{\mathbb{R}^d} \left(\partial_v \tilde{L} + \partial_v \tilde{h} \int_{\mathbb{R}^d} \partial_x \tilde{L} \hat{m} dy + \partial_x m^* \right) (v - \hat{v})\hat{m} dx \geq 0
$$

where m^* satisfies

$$
\partial_t m^* + \frac{\sigma^2}{2} \partial_{xx} m^* + \hat{v} \cdot \partial_x m^* = - \left[\tilde{L} + \hat{m} \partial_m \tilde{L} + (\tilde{h} + \hat{m} \partial_m \tilde{h}) \int_{\mathbb{R}^d} \partial_x \tilde{L} \hat{m} dy \right]
$$

Link with dynamic programming

V' coincides with m^*, the adjoint state of m.

M. Laurière

DPP for MFC

11 / 29
1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
 - The model
 - Two algorithms
 - Numerical results
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Outline

1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
 - The model
 - Two algorithms
 - Numerical results
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
A (toy) model of oil production

Setting: \textit{continuum of producers exploiting an oil field (limited resource)}
A (toy) model of oil production5

Setting: \textit{continuum of producers exploiting an oil field (limited resource)}

Remaining quantity dynamics

\[
dX_t = -a_t dt + \sigma X_t dW_t, \quad X_0 \text{ given by its PDF,}
\]

- \(X_t\) = \text{quantity} of oil left in the field at time \(t\) (seen by a producer)
- \(a_t dt\) = \text{quantity extracted} by the producer during \((t, t + dt)\)
- \(W\) = standard Brownian motion (incertitude), \(\sigma > 0\) = volatility (constant)
- \(a_t = a(X_t, t)\) = feedback law to \text{control} the production.

\textbf{Price}

\[
C = \text{cost of extraction} = C(a) = \alpha a + \beta a^2
\]

- \(\alpha > 0\), \(\beta > 0\).

\[
p_t = \kappa e^{-bt} \left(\mathbb{E}(a_t)\right) - c = \text{price of oil, where:} \quad \kappa > 0, \quad b > 0, \quad c > 0.
\]

\textbf{Intuition:}

- \(p\) decreases with mean production and time because
 - scarcity of oil increases its price and conversely.
 - future oil will be cheaper because it will be replaced by renewable energy.

5[Guéant-Lasry-Lions]
A (toy) model of oil production5

Setting: continuum of producers exploiting an oil field (limited resource)

Remaining quantity dynamics

\[dX_t = -a_t dt + \sigma X_t dW_t, \quad X_0 \text{ given by its PDF}, \]

- \(X_t \) = quantity of oil left in the field at time \(t \) (seen by a producer)
- \(a_t dt \) = quantity extracted by the producer during \((t, t + dt)\)
- \(W \) = standard Brownian motion (incertitude), \(\sigma > 0 \) = volatility (constant)
- \(a_t = a(X_t, t) \) = feedback law to control the production.

Price

- \(C = \text{cost of extraction} = C(a) = \alpha a + \beta a^2 \) where: \(\alpha > 0 \) and \(\beta > 0 \).
- \(p_t = \kappa e^{-bt(\mathbb{E}(a_t))^{-c}} \) = price of oil, where: \(\kappa > 0 \), \(b > 0 \) and \(c > 0 \).

5[Guéant-Lasry-Lions]

M. Laurière
DPP for MFC
A (toy) model of oil production

Setting: continuum of producers exploiting an oil field (limited resource)

Remaining quantity dynamics

\[dX_t = -a_t dt + \sigma X_t dW_t, \quad X_0 \text{ given by its PDF,} \]

- \(X_t = \text{quantity} \) of oil left in the field at time \(t \) (seen by a producer)
- \(a_t dt = \text{quantity extracted} \) by the producer during \((t, t + dt)\)
- \(W = \text{standard Brownian motion (incertitude),} \ \sigma > 0 = \text{volatility (constant)} \)
- \(a_t = a(X_t, t) = \text{feedback law to control the production.} \)

Price

- \(C = \text{cost of extraction} = C(a) = \alpha a + \beta a^2 \) where: \(\alpha > 0 \) and \(\beta > 0 \).
- \(p_t = \kappa e^{-bt (\mathbb{E}(a_t))^{-c}} = \text{price of oil, where:} \ \kappa > 0, b > 0 \) and \(c > 0 \).

Intuition: \(p \) decreases with mean production and time because
- \(\text{scarcity} \) of oil increases its price and conversely.
- future oil will be cheaper because it will be replaced by renewable energy.

5 [Guéant-Lasry-Lions]
Optimisation

Goal:

Maximise over $a(\cdot, \cdot) \geq 0$ the profit:

$$J(a) = \mathbb{E} \left[\int_0^T (p_t a_t - C(a_t))e^{-rt} \, dt \right] - \gamma \mathbb{E}[|X_T|^\eta]$$

subj to: $dX_t = -a_t \, dt + \sigma X_t \, dW_t$, X_0 given

with γ and $\eta = \text{penalisation}$ parameters (encouraging to consume before T).
Optimisation

Goal:

Maximise over $a(\cdot, \cdot) \geq 0$ the profit:

$$J(a) = \mathbb{E} \left[\int_0^T (p_t a_t - C(a_t)) e^{-rt} dt \right] - \gamma \mathbb{E}[|X_T|^\eta]$$

subject to: $dX_t = -a_t dt + \sigma X_t dW_t$, X_0 given

with γ and η = penalisation parameters (encouraging to consume before T).

Replacing p and C by their expressions gives

$$J(a) = \mathbb{E} \left[\int_0^T (\kappa e^{-bt} (\mathbb{E}[a_t])^{-\alpha} a_t - \alpha_a - \beta(a_t)^2) e^{-rt} dt \right] - \gamma \mathbb{E}[|X_T|^\eta]$$

Remark: $J =$ mean of a function of $\mathbb{E}[a_t]$ so it is a MFC problem
Remarks on Existence of Solutions

Sufficient condition

If $c < 1$ and \bar{a}_t upper bounded on $[0, T]$, $J(a) \leq \int_0^T \left(c\alpha + (1 + c)\beta\bar{a}_t \right) \frac{\bar{a}_t e^{-rt}}{1 - c} dt \leq C$.

A counter example:

If $c > 1$ and $a_t = |\tau - t|$ for some $\tau \in (0, T)$, then the problem is not well posed (nobody extract oil \Rightarrow infinite price).
Remarks on Existence of Solutions

Sufficient condition

if $c < 1$ and \bar{a}_t upper bounded on $[0, T]$, $J(a) \leq \int_0^T (c\alpha + (1 + c)\beta \bar{a}_t) \frac{\bar{a}_t e^{-rt}}{1 - c} dt \leq C$.

A counter example: if $c > 1$ and $a_t = |\tau - t|$ for some $\tau \in (0, T)$, then the problem is not well posed (nobody extract oil \Rightarrow infinite price)
Remarks on Existence of Solutions

Sufficient condition

If $c < 1$ and \bar{a}_t upper bounded on $[0, T]$, $J(a) \leq \int_0^T (c\alpha + (1 + c)\beta\bar{a}_t) \frac{\bar{a}_t e^{-rt}}{1 - c} dt \leq C$.

A counter example: if $c > 1$ and $a_t = |\tau - t|$ for some $\tau \in (0, T)$, then the problem is not well posed (nobody extract oil \Rightarrow infinite price).

Linear feedback case

Assume $a(x, t) = w(t)x$. Then there is an analytical solution:

$$X_t = X_0 \exp \left(- \int_0^t w(\tau) d\tau - \frac{\sigma^2}{2} t + \sigma (W_t - W_0) \right).$$

For $\eta = 2$, the problem reduces to maximizing over $\tilde{w}_t = w(t) e^{-\int_0^t w(\tau) d\tau} \geq 0$

$$J(\tilde{w}_t) = \int_0^T \left(\kappa e^{-bt} \mathbb{E}[X_0]^{1-c} \tilde{w}_t^{1-c} - \alpha \mathbb{E}[X_0] \tilde{w}_t - \beta \mathbb{E}[X_0^2] \tilde{w}_t^2 e^{\sigma^2 t} \right) e^{-rt} dt$$

$$- \gamma \mathbb{E}[X_0^2] e^{\sigma^2 T - 2 \int_0^T w(\tau) d\tau}$$
Outline

1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
 - The model
 - Two algorithms
 - Numerical results
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Dynamic Programming

Let \(u = -a = \text{depletion rate (control)} \).

Ignore the constraints on \(X_t \in [0, L] \) and \(u \leq 0 \): let \(X_t, u_t \in \mathbb{R} \) (see the numerical results).

Fokker-Planck eq. for \(\rho(\cdot, t) = \text{density of } X_t \)

\[
\partial_t \rho - \frac{\sigma^2}{2} \partial_{xx}(x^2 \rho) + \partial_x (\rho u) = 0 \quad (x, t) \in \mathbb{R} \times (0, T), \quad \rho|_{t=0} = \rho_0 \quad \text{(FP)}
\]

Minimise, subject to (FP) with \(\rho|_{t=\tau} = \rho_\tau \),

\[
\tilde{J}(\tau, \rho_\tau, u) = \int_{\tau}^{T} \int_{\mathbb{R}} \left(\kappa e^{-\beta t} (-\bar{u}_t)^{-c} u_t - \alpha u_t + \beta \bar{u}_t^2 \right) e^{-rt} \rho_t dx dt + \int_{\mathbb{R}} \gamma |x|^{\eta} \rho|_T(x) dx
\]
Dynamic Programming

Let $u = -a = \text{depletion rate (control)}$.

Ignore the constraints on $X_t \in [0, L]$ and $u \leq 0$: let $X_t, u_t \in \mathbb{R}$ (see the numerical results).

Fokker-Planck eq. for $\rho(\cdot, t) = \text{density of } X_t$

$$\partial_t \rho - \frac{\sigma^2}{2} \partial_{xx}(x^2 \rho) + \partial_x (\rho u) = 0 \quad (x, t) \in \mathbb{R} \times (0, T), \quad \rho|_{t=0} = \rho_0$$ (FP)

Minimise, subject to (FP) with $\rho|_{t=\tau} = \rho_\tau$,

$$\tilde{J}(\tau, \rho_\tau, u) = \int_{\tau}^{T} \int_{\mathbb{R}} \left(\kappa e^{-bt}(\overline{u}_t)^{-c} u_t - \alpha u_t + \beta u_t^2 \right) e^{-rt} \rho_t dx dt + \int_{\mathbb{R}} \gamma |x|^\eta \rho|_T(x) dx$$

DPP for $V[\rho_\tau](\tau) = \min_u \tilde{J}(\tau, \rho_\tau, u)$

$$u(x, t) = \frac{1}{2\beta} \left[\alpha - e^{rt} \partial_x V' - \kappa (1 - c) e^{-bt} (-\overline{u})^{-c} \right]$$ (EU)

$$\partial_t V' + \frac{\sigma^2 x^2}{2} \partial_{xx} V' = \frac{e^{-rt}}{4\beta} \left(\alpha - e^{rt} \partial_x V' - \kappa (1 - c) e^{-bt} (-\overline{u})^{-c} \right)^2$$ (DV)

(depends only on \overline{u} and not on u)
Algorithm 1: Fixed point iteration (parameter $\omega \in (0, 1)$)

INITIALIZE: set $u = u_0$, $i = 0$

REPEAT:

- Compute ρ_i by solving (FP)
- Compute $\bar{u}_i = \int_{\mathbb{R}} u_i \rho_i$
- Compute V'_i by (DV)
- Compute \tilde{u}_{i+1} by (EU) and set $u_{i+1} = u_i + \omega(\tilde{u}_{i+1} - u_i)$
- Set $i = i + 1$

WHILE not converged.
Algorithm 1: Fixed point iteration (parameter \(\omega \in (0, 1) \))

INITIALIZE: set \(u = u_0, \ i = 0 \)

REPEAT:

- Compute \(\rho_i \) by solving (FP)
- Compute \(\bar{u}_i = \int_{\mathbb{R}} u_i \rho_i \)
- Compute \(V'_i \) by (DV)
- Compute \(\bar{u}_{i+1} \) by (EU) and set \(u_{i+1} = u_i + \omega(\bar{u}_{i+1} - u_i) \)
- Set \(i = i + 1 \)

WHILE not converged.

Open questions:

- (FP) eq.: existence of solution ?
- relevant stopping criteria ? *(compare with Riccati, see later)*
- \(2^{nd} \) order term vanishes at \(x = 0 \). Model does not impose \(u(0, t) = 0 \Rightarrow singularity \)
Introduce an adjoint ρ^* satisfying: $\rho^* |_{T} = \gamma|x|^n$, and in $\mathbb{R} \times (0, T)$

$$
\partial_t \rho^* + \frac{\sigma^2 x^2}{2}\partial_{xx} \rho^* + u\partial_x \rho^* = e^{-rt}(\alpha - \beta u - \kappa(1 - c)e^{-bt}(-\bar{u})^{-c})u
$$

(Adj)

Then

$$
\text{Grad}_u J = -\left(e^{-rt}(\alpha - 2\beta u - \kappa(1 - c)e^{-bt}(-\bar{u})^{-c}) - \partial_x \rho^*\right)\rho
$$

(DJ)
Calculus of Variations on the Deterministic Ctrl Pb

Introduce an adjoint ρ^* satisfying: $\rho^*|_T = \gamma|x|^n$, and in $\mathbb{R} \times (0, T)$

$$\partial_t \rho^* + \frac{\sigma^2 x^2}{2} \partial_{xx} \rho^* + u \partial_x \rho^* = e^{-rt}(\alpha - \beta u - \kappa(1 - c)e^{-bt}(-\bar{u})^{-c})u$$

(Adj)

Then

$$\text{Grad}_u J = -\left(e^{-rt}(\alpha - 2\beta u - \kappa(1 - c)e^{-bt}(-\bar{u})^{-c}) - \partial_x \rho^* \right) \rho$$

(DJ)

Algorithm 2: Steepest descent (parameter $0 < \epsilon \ll 1$)

INITIALIZE: $a = a_0$ and $i = 0$

REPEAT:

- Compute ρ_i by (FP) with $\rho_i|_{t=0}$ given
- Compute $\bar{u}_i = \int_{\mathbb{R}} u_i \rho_i \, dx$
- Compute ρ^*_i by (Adj)
- Compute $\text{Grad}_u J$ by (DJ)
- Compute a feasible descent step $\mu_i \in \mathbb{R}$ by Armijo rule
- Set $u_{i+1} = u_i - \mu_i \text{Grad}_u J$, $i = i + 1$

WHILE ($\|\text{Grad}_u J\| > \epsilon$)

Remark: the asymptotic behaviour of u as $x \to \infty$ can be an issue
Riccati Equation when $\eta = 2$

Let $\eta = 2$, look for V' in the form:

$$V'(x, t) = P(t)x^2 + Z(t)x + S(t)$$

Let $Q_t = e^{rt}P_t$ and $\mu = \sigma^2 - r$. For $\beta e^{rt}\mu - Q_t > 0$, (DV) leads to

$$P_t = \frac{4\beta\mu e^{(T-t)\mu}}{\gamma e^{(T-t)\mu} - \gamma + 4\beta\mu}.$$

Then:

- u is found by (EU):

$$u(x, t) = \frac{1}{2\beta} \left[\alpha - e^{rt} \partial_x V' - \kappa(1 - c)e^{-bt}(-\bar{u})^{-c} \right] \quad \text{(EU)}$$

- in particular $\partial_x u = -\frac{1}{8\beta} \partial_{xx} V' = -\frac{1}{4\beta} P_t$

- but the Fokker-Planck eq. must be solved numerically to compute \bar{u}.

Remark:

- we can also identify Z and S

- $u(\cdot, t) : x \mapsto 2xP(t) + Z(t)$ is not a linear feedback
1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
 - The model
 - Two algorithms
 - Numerical results
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Localisation

Fix large L and T. Consider $(x, t) \in (0, L) \times (0, T)$ with $\rho(L, t) = 0$, $\forall t$.

The solution is sensitive to the **boundary conditions**. When $\eta = 2$,

$$\frac{1}{2} \sigma^2 x^2 \partial_x V' = \sigma^2 x^3 P_t = \sigma^2 x V'$$

⇒ use this as boundary condition for V'
Numerical implementation

Localisation

Fix large L and T. Consider $(x, t) \in (0, L) \times (0, T)$ with $\rho(L, t) = 0$, $\forall t$.

The solution is sensitive to the **boundary conditions**. When $\eta = 2$,

$$\frac{1}{2} \sigma^2 x^2 \partial_x V' = \sigma^2 x^3 P_t = \sigma^2 x V'$$

\Rightarrow use this as boundary condition for V'

Discretization

space-time finite element method of degree 1 over $(0, L) \times (0, T)$. Using *freefem++*.
Localisation

Fix large \(L \) and \(T \). Consider \((x, t) \in (0, L) \times (0, T)\) with \(\rho(L, t) = 0, \forall t \).

The solution is sensitive to the **boundary conditions**. When \(\eta = 2 \),

\[
\frac{1}{2} \sigma^2 x^2 \partial_x V' = \sigma^2 x^3 P_t = \sigma^2 x V'
\]

\(\Rightarrow \) use this as boundary condition for \(V' \)

Discretization

space-time finite element method of degree 1 over \((0, L) \times (0, T)\). Using freefem++.

Parameters

- 50 points in space and 50 in time, \(L = 10, T = 5 \)
- \(\alpha = 1, \beta = 1, \gamma = 0.5, \kappa = 1, b = 0.1, r = 0.05, \sigma = 0.5 \) and \(c = 0.5 \)
- \(\rho_0 = \) Gaussian curve centred at \(x = 5 \) with volatility 1
- \(u_0 = -\alpha/(2\beta) \)
Numerical Implementation: Fixed point Algo

Non-linearity of eq. (DV): semi-linearise it using the **iterative loop**

Stopping criteria: error $||u - u_e||$, $u_e =$ local min from Ricatti eq. Parameter $\omega = 0.5$.

Optimal $u(x, t)$ and the Ricatti solution slightly below

PDF of resource X_t: $\rho(x, t)$
Numerical Implementation: Fixed Point Algo

Non-linearity of eq. (DV): semi-linearise it using the iterative loop.

Stopping criteria: error $\|u - u_e\|$, u_e = local min from Ricatti eq. Parameter $\omega = 0.5$.

Optimal $u(x, t)$ and the Ricatti solution slightly below.

Remarks:
- optimal control is linear
- resource distribution: Gaussian to concentrated around $x = 0.5$

Convergence: $\text{error} = \int (\partial_x u - \partial_x u_e)^2 \, dx \, dt$ versus $k = \text{iteration number}$:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>1035</td>
<td>661.2</td>
<td>8.605</td>
<td>44.7</td>
<td>3.27</td>
<td>0.755</td>
<td>0.335</td>
<td>0.045</td>
<td>0.015</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Evolution of production $\bar{a}_t = -\bar{u}_t$ and price $p_t = \kappa e^{-bt}(-\bar{u}_t)^{-c}$.
Generates **different solutions** depending on u_0:

- $u_0 = u_e$: small **oscillations** to decrease the cost function \Rightarrow mesh dependent
- $u_0 = -0.5$: solution below after 10 iterations

Another solution u
The corresponding ρ
Numerical Implementation: Steepest Descent

Generates **different solutions** depending on u_0:
- $u_0 = u_e$: small **oscillations** to decrease the cost function \Rightarrow mesh dependent
- $u_0 = -0.5$: solution below after 10 iterations

Convergence: Values of J and $\|\text{Grad}_u J\|$ versus iteration number k

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>..</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>0.7715</td>
<td>0.2834</td>
<td>0.2494</td>
<td>0.1626</td>
<td>..</td>
<td>0.0417</td>
</tr>
<tr>
<td>$|\text{Grad}_u J|$</td>
<td>0.003395</td>
<td>0.001602</td>
<td>0.000700</td>
<td>0.000813</td>
<td>..</td>
<td>0.000794</td>
</tr>
</tbody>
</table>
Linear Feedback Solution

Steepest descent with:
- Automatic differentiation (operator overloading in C++)
- Initializing with the linear part of the Riccati solution
- Gives $w(t)$, very close to the Riccati solution.

Why Riccati solution is not the best solution?
Plot $J^d(\lambda) = J(w^d_t + \lambda h_t), \lambda \in (-0.5, +0.5)$, h_t is an approximate $w_t - \text{Grad}J(w^d_t)$.

Left: $w(t)$ maximizing $J(w)$ VS feedback coef. of the Riccati solution (solid line)
Center: J^d_λ as a function of $\lambda \in (-0.5, +0.5)$; Ricatti solution at $\lambda = 0$
Right: zoom at $\lambda = \pm 0.12$: absolute min of $J^d(.)$ (shallow and mesh dependent).
Outline

1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Example: Bertrand Equilibrium

Continuum of producers, whose state is the amount of resource $\in \mathbb{R}_+$:

$$dX_t = -q(X_t, t)dt + \sigma dW_t, \ \forall t \in [0, T],$$

if $X_t > 0$ and X_t is absorbed at 0, X_0 has density m_0,

where $q(x, t) = a(\eta(t))[1 + \epsilon \tilde{p}(t)] - p(x, t)$ is the quantity produced, with

$$\eta(t) = \int_{\mathbb{R}_+} m(x, t)dx : \text{the proportion of remaining producers},$$

$$\tilde{p}(t) = \int_{\mathbb{R}_+} p(x, t)m(x, t)dx : \text{the average price (non local in } p),$$

$$p(t) : \text{the price (control, same for all the agents)}.$$

Last, $a(\eta) = \frac{1}{1+\epsilon \eta}$, and $\epsilon > 0$ reflects the degree of interaction.

6[Chan-Sircar]
Example: Bertrand Equilibrium

Continuum of producers, whose state is the amount of resource $\in \mathbb{R}^+$:

$$dX_t = -q(X_t, t)dt + \sigma dW_t, \ \forall t \in [0, T],$$

if $X_t > 0$ and X_t is absorbed at 0, X_0 has density m_0,

where $q(x, t) = a(\eta(t))[1 + \epsilon \tilde{p}(t)] - p(x, t)$ is the quantity produced, with

$$\eta(t) = \int_{\mathbb{R}^+} m(x, t)dx : \text{the proportion of remaining producers},$$

$$\tilde{p}(t) = \int_{\mathbb{R}^+} p(x, t)m(x, t)dx : \text{the average price (non local in } p),$$

$$p(t) : \text{the price (control, same for all the agents)}.$$

Last, $a(\eta) = \frac{1}{1 + \epsilon \eta}$, and $\epsilon > 0$ reflects the degree of interaction.

The goal of a typical agent is to maximise

$$J(p) = E \left[\int_0^T e^{-rs} p(s, X_s)q(s, X_s)1_{\{X_s > 0\}}ds \right].$$

[Chan-Sircar]
PDE System

Proposition

The optimal control is given: \(p(x, t) = \frac{1}{2} \left(a(\eta(t))[1 + \epsilon \tilde{p}(t)] + \partial_x u(x, t) \right) \), and the optimal equilibrium is given by:

\[
q(x, t) = \frac{1}{2} \left[\alpha_{MFTC} + \epsilon \int_{\mathbb{R}^+} \partial_x u(\xi, t)m(\xi, t)d\xi \right] - \partial_x u(x, t)
\]

where \(\alpha_{MFTC} = 1 \), with \((u, m)\) satisfying

\[
\begin{cases}
\partial_t u(x, t) - ru(x, t) + \frac{\sigma^2}{2} \partial_{xx} u(x, t) + \left(\psi(m(\cdot, t), \partial_x u(\cdot, t))(x) \right)^2 = 0, \\
\partial_t m(x, t) - \frac{\sigma^2}{2} \partial_{xx} m(x, t) - \partial_x \left(\psi(m(\cdot, t), \partial_x u(\cdot, t))m(\cdot, t) \right)(x) = 0,
\end{cases}
\]

with \(\psi(m(\cdot, t), \partial_x u(\cdot, t)) : x \mapsto q(x, t) \).

For the corresponding MFG, \(\alpha_{MFTC} \) is replaced by \(\alpha_{MFG} = 2.7 \).\[Bensoussan-Graber\]
Algorithm and Numerical Results

Fixed point algo. (param. $\epsilon > 0$)

INIT.: set $i = 0$, $p = p_0$, compute \tilde{p}_0.

REPEAT:
- Compute u_i, solution of HJB eq.
- Compute p_{i+1}, \tilde{p}_{i+1} and q_{i+1}
- Compute m_i, solution of FP eq.
- Set $i = i + 1$

WHILE $||m_{i+1} - m_i|| > \epsilon$

Average price VS time (\bar{p}).

Remaining producers VS time (η).
Outline

1. Mean field control and mean field games
2. Dynamic programming for MFC
3. Numerical example 1: oil production
4. Numerical example 2: Bertrand equilibrium
5. Conclusion
Conclusion

Summary:

- dynamic programming for mean field control problems
- two numerical methods
- application to economics
- follow-up articles

Current directions of research:

- proof of existence and uniqueness for the PDE system
- other numerical methods
- other applications

\[\text{Pham-Wei, Pfeiffer, \ldots}\]
Some References (very partial)

Thank you!