From Martingale Optimal Transport to McKean-Vlasov Control Problems

Xiaolu Tan

University of Paris-Dauphine, PSL University

26 September 2018
Financial/Actuarial Mathematics Seminar @U. Michigan
Outline

1 Introduction
 - Mathematical Finance Modelling
 - Stochastic Optimal Control

2 From MOT to McKean-Vlasov Control Problems
 - The McKean-Vlasov Control Problem
 - Martingale Optimal Transport (MOT)
 - From MOT to McKean-Vlasov Control

3 Solving the McKean-Vlasov Control Problems
 - Solving the McKean-Vlasov Control Problem
 - Back to the MOT-MKV Control Problem
Financial market

- **Financial market modelling**: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space equipped with filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{T}}$, prices of some financial assets is given by $S = (S_t)_{t \in \mathbb{T}}$, the payoff at maturity T of a derivative option is a random variable $\xi : \Omega \to \mathbb{R}$ (e.g. $\xi = (S_T - K)_+$).
 - Discrete time market: $\mathbb{T} = \{0, 1, \cdots, T\}$.
 - Continuous time market: $\mathbb{T} = [0, T]$.

- **Trading**: A trading strategy is predictable process $H = (H_t)_{0 \leq t \leq T}$, whose P&L given by

\[
(H \circ S)_T := \sum_{t=1}^{T} H_t(S_t - S_{t-1}).
\]
Fundamental Theorem of Asset Pricing (FTAP)

For simplicity $\mathbb{T} = \{0, 1\}$, interest rate $r = 0$.

- No arbitrage condition (NA): there is no H s.t.
 \[H(S_1 - S_0) \geq 0, \quad \text{and} \quad \mathbb{P}[H(S_1 - S_0) > 0] > 0. \]
- Equiv. martingale measures: $\mathcal{M} := \{ \mathbb{Q} \sim \mathbb{P} : \mathbb{E}^\mathbb{Q}[S_1|\mathcal{F}_0] = S_0 \}$.
- The market is complete if
 \[\forall \xi \in \mathcal{F}, \ \exists (y, H) \text{ s.t. } y + H(S_1 - S_0) = \xi, \text{ a.s.} \]

Theorem (FTAP (discrete time))

(i) (NA) is equivalent to the existence of equivalent martingale measure, i.e.

\[(\text{NA}) \iff \mathcal{M} \neq \emptyset. \]

(ii) The market is complete iff \mathcal{M} is a singleton.
Basic problems in mathematical finance

- **Pricing and hedging** for a derivative option $\xi : \Omega \to \mathbb{R}$:
 - **Complete market**: Price of derivative option equals to its replication cost.
 - **Incomplete market**: Every equivalent martingale measure $Q \in \mathcal{M}$ provides a no-arbitrage price: $E^Q[\xi]$.

 A pricing-hedging duality:
 \[
 \sup_{Q \in \mathcal{M}} E^Q[\xi] = \inf \left\{ y \in \mathbb{R} : y + H(S_1 - S_0) \geq \xi, \text{ a.s.} \right\}.
 \]

- **Utility maximization** Let $U : \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ be a utility function, we consider
 \[
 \max_H E \left[U(x + (H \circ S)_T) \right].
 \]
Concrete market models

- The simplest martingales:
 - Random walk: \(\Delta X_t := X_t - X_{t-1} \perp (X_0, \ldots, X_{t-1}) \) and
 \[
 \mathbb{P}[\Delta X_t = 1] = \mathbb{P}[\Delta X_t = -1] = \frac{1}{2}.
 \]
 - Brownian motion: \(W = (W_t)_{t \geq 0} \) is a continuous process with independent and centred stationary increment.

- Two basic models:
 - Binomial tree model: for \(0 < d < 1 < u \),
 \[
 \mathbb{P}[S_t = dS_{t-1}] = p, \quad \mathbb{P}[S_t = uS_{t-1}] = 1 - p.
 \]
 - Black-Scholes model: \(S_t = S_0 \exp(-\frac{1}{2}\sigma^2 t + \sigma W_t) \), or equivalently
 \[
 dS_t = \sigma S_t dB_t.
 \]
Diffusion process, SDE and PDE

- **Diffusion process** defined by SDE (stochastic differential equation)

\[dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t. \]

- **Kolmogorov forward equation** (Fokker-Planck equation) on the density \(p(t, x) \) of \(X_t \) :

\[\partial_t p(t, x) + \partial_x (b(t, x)p(t, x)) - \frac{1}{2} \partial_{xx}^2 (\sigma^2(t, x)p(t, x)) = 0. \]

- **Kolmogorov backward equation** (Feynman-Kac formula) on \(u(t, x) := \mathbb{E}[g(X_{T}^{t, x})] \) :

\[\partial_t u(t, x) + b(t, x)\partial_x u(t, x) + \frac{1}{2} \sigma^2(t, x)\partial_{xx}^2 u(t, x) = 0. \]
Calibration, local volatility model

- Assume that the price $C(T, K) = \mathbb{E}[(S_T - K)_+]$ is known for all $K \in \mathbb{R}$, then one can obtain the distribution $p(T, K)$ of S_T by

$$\partial_K C(T, K) = -\mathbb{E}[\mathbb{1}_{S_T \geq K}], \quad \partial_{KK}^2 C(T, K) = \mathbb{E}[\delta_K(S_T)] = p(T, K).$$

- Dupire’s local volatility model : $dS_t = \sigma_{loc}(t, S_t)dW_t$, then the Fokker-Planck equation leads to

$$\partial_T C(T, K) - \frac{1}{2} \sigma_{loc}^2(T, K) \partial_{KK}^2 C(T, K) = 0.$$

- Markovian projection (Gyöngy, 1986) : let $dS_t = \sigma_t dW_t$ has the marginal distribution $p(t, x)$, then

$$\mathbb{E}[\sigma_t^2 | S_t] = \sigma_{loc}^2(t, S_t), \text{ a.s. } \forall t.$$
Controlled diffusion processes problem

- Let X_α be a controlled process, with the control process α, defined by

$$dX_\alpha^t = b(t, X_\alpha^t, \alpha_t)dt + \sigma(t, X_\alpha^t, \alpha_t)dW_t,$$

a standard stochastic control problem is given by

$$V(0, X_0) := \sup_{\alpha} E \left[\int_0^T f(t, X_\alpha^t, \alpha_t)dt + g(X_T^\alpha) \right].$$

- Applications in finance: utility maximization, pricing under model uncertainty, American option pricing, etc.

- A very large literature on the subject:
 - A big community on deterministic control.
Different approaches

- **Approach 1**: Pontryagin’s maximum principle: if \((\alpha^*, X^*)\) is an optimal control, the first order necessary condition leads to a forward-backward system.

- **Approach 2**: Dynamic Programming (Bellman) Principle:

\[
V(0, X_0) = \sup_{\alpha} \mathbb{E} \left[\int_0^t L(s, X_s^\alpha, \alpha_s) ds + V(t, X_t^\alpha) \right].
\]

- PDE (HJB equation) characterization for the value function,
 - numerical methods, etc.
- Numerical computation by a backward scheme,
- Supermartingale characterization of \(V(t, X_t^\alpha)\),
- Optional decomposition, duality, etc.
Outline

1. Introduction
 - Mathematical Finance Modelling
 - Stochastic Optimal Control

2. From MOT to McKean-Vlasov Control Problems
 - The McKean-Vlasov Control Problem
 - Martingale Optimal Transport (MOT)
 - From MOT to McKean-Vlasov Control

3. Solving the McKean-Vlasov Control Problems
 - Solving the McKean-Vlasov Control Problem
 - Back to the MOT-MKV Control Problem
The McKean-Vlasov stochastic equation

- A large population \((i = 1, \cdots, N) \) system with interaction:

\[
dX_{t}^{i,N} = b\left(t, X_{t}^{i,N}, \frac{1}{N} \sum \delta_{X_{t}^{i,N}} \right) dt + \sigma\left(t, X_{t}^{i,N}, \frac{1}{N} \sum \delta_{X_{t}^{j,N}} \right) dW_{t}^{i}.
\]

- McKean-Vlasov equation: let \(N \to \infty \), using the limit theory (law of large numbers) and considering a representative agent, it leads to

\[
dX_{t} = b\left(t, X_{t}, \mathcal{L}(X_{t}) \right) dt + \sigma\left(t, X_{t}, \mathcal{L}(X_{t}) \right) dW_{t}.
\]
The McKean-Vlasov control problem

- The McKean-Vlasov control problem:

$$\sup_{\alpha} \mathbb{E}\left[\int_0^T f(t, X_t^\alpha, \mathcal{L}(X_t^\alpha), \alpha_t) dt + g(X_T^\alpha, \mathcal{L}(X_T^\alpha)) \right],$$

where

$$dX_t^\alpha = b(t, X_t^\alpha, \mathcal{L}(X_t^\alpha), \alpha_t) dt + \sigma(t, X_t^\alpha, \mathcal{L}(X_t^\alpha), \alpha_t) dW_t.$$

- Main questions:
 - The limit theory: Fischer-Livieri(16), Lacker(17), etc.
 - Pontryagin’s maximum principle: Andersson-Djehiche(10), Yong(13), Carmona-Delarue (14), Buckdahn-Li-Ma(16), etc.
 - The dynamic programming principle: Laurière-Pironneau(14), Bensoussan-Frehse-Yam(15), Pham-Wei(16,17), Bayraktar-Cosso-Pham(18), etc.
 - Applications in Economy, Finance, etc.
An optimal control problem under marginal constraint

- An optimal control problem under marginal constraint (Tan-Touzi (AOP, 13)):

\[
dX_t^\alpha = b(t, X_t^\alpha, \alpha_t)dt + \sigma(t, X_t^\alpha, \alpha_t)dW_t,
\]

and for some given marginal distribution μ,

\[
\sup_{\alpha : X_T^\alpha \sim \mu} \mathbb{E}\left[\int_0^T L(t, X_{t\wedge .}^\alpha, \alpha_t)dt + \Phi(X_T^\alpha) \right].
\]

- Motivation from finance: model-free no-arbitrage pricing for exotic options,
 - When $b \equiv 0$, X^α is a martingale, i.e. no-arbitrage pricing.
 - Marginal law μ is recovered from the price of call options.
Martingale Optimal Transport (MOT)

- Numerous varied formulations:
 - Discrete time vs Continuous time,
 - Continuous path vs Càdlàg path,
 - One marginal vs Multiple marginals.

- Some pioneering works: Skrokoahod Embedding: Hobson (98); MOT problem: Beiglböck, Henry-Labordère, Penkner (13), Galichon, Henry-Labordère, Touzi (14), Tan-Touzi (13), etc.

Theorem (Kellerer, 1972)

Given a family of marginals $\mu = (\mu_t)_{t \geq 0}$, there is martingale M such that $M_t \sim \mu_t$ for all $t \geq 0$ iff μ_t has finite first order and $t \mapsto \mu_t(\phi)$ is increasing for all convex functions ϕ.

Peacocks

Francis Hirsch
Christophe Profeta
Bernard Roynette
Marc Yor

Peacocks and Associated Martingales, with Explicit Constructions

Bocconi University Press
Springer
Peacocks

Haïku by Pf. Y. Takahashi

A proud peacock spreads

Its tail pretending to be

A martingale.
Optimal martingales given full marginals

- **Fake Brownian motion**: Albin (08), Oleszkiewicz (08), etc.
- **Explicit constructions**:
 - **Madan-Yor (02)**: maximizing the expected value of the running maximum.
 - **Hobson (17)**: minimizing the expected total variation.
 - **Henry-Labordère-Tan-Touzi (16, SPA)**, maximizing the expected quadratic variation.
- **Duality and existence of optimal martingales**:
 - **Guo-Tan-Touzi (16, SICON)**: S-topology.
 - **Källblad-Tan-Touzi (17, AAP)**: Skorokhod embedding approach.
A MOT problem given full marginals

- Let $\mu = (\mu_t)_{0\leq t\leq T}$ a peacock, we consider the MOT problem
 \[V_{\text{MOT}} := \sup_{\sigma} \mathbb{E}[\Phi(X^\sigma)], \quad dX_t^{\sigma} = \sigma_t dW_t, \quad X_t^{\sigma} \sim \mu_t, \quad \forall t \in [0, T]. \]

- **Remark 1**: There exists a unique Markovian diffusion process X, defined by
 \[dX_t = \sigma_{\text{loc}}(t, X_t) dW_t, \]
 satisfying the marginal constraints.

- **Remark 2**: Let $X_t^{\sigma} = X_0^{\sigma} + \int_0^t \sigma_s dW_s$ be a diffusion process such that $X_t^{\sigma} \sim \mu_t$, for all $t \in [0, 1]$, then, by Markovian projection,
 \[\mathbb{E}[\sigma_t^2 | X_t^{\sigma}] = \sigma_{\text{loc}}^2(t, X_t^{\sigma}), \quad \text{a.s.} \quad \forall t \in [0, T], \]
 and it follows that
 \[dX_t^{\sigma} = \frac{\sigma_t}{\sqrt{\mathbb{E}[\sigma_t^2 | X_t^{\sigma}]}} \sigma_{\text{loc}}(t, X_t^{\sigma}) dW_t. \]
A McKean-Vlasov control problem

- Let us consider all processes \((\sigma, \hat{X}^\sigma)\) satisfying

\[
d\hat{X}_t^\sigma = \frac{\sigma_t}{\sqrt{\mathbb{E}[\sigma_t^2|\hat{X}_t^\sigma]}} \sigma_{\text{loc}}(t, \hat{X}_t^\sigma) dW_t,
\]

and let

\[
V_{\text{MKV}} := \sup_{(\sigma, \hat{X}^\sigma)} \mathbb{E}[\Phi(\hat{X}^\sigma)].
\]

\[
\hat{\sigma}_t := \frac{\sigma_t}{\sqrt{\mathbb{E}[\sigma_t^2|\hat{X}_t^\sigma]}} \sigma_{\text{loc}}(t, \hat{X}_t^\sigma) = \hat{\sigma}(t, \hat{X}_t^\sigma, \mathcal{L}(\sigma_t, \hat{X}_t^\sigma), \sigma_t)
\]

satisfies

\[
\mathbb{E}[\hat{\sigma}_t^2|\hat{X}_t^\sigma] = \sigma_{\text{loc}}^2(t, \hat{X}_t^\sigma).
\]
A McKean-Vlasov control problem

Theorem

Under technical conditions, one has

\[V_{\text{MOT}} = V_{\text{MKV}}. \]

An optimal solution to \(V_{\text{MOT}} \) induces an optimal solution to \(V_{\text{MKV}} \), and vice versa.
Outline

1. Introduction
 • Mathematical Finance Modelling
 • Stochastic Optimal Control

2. From MOT to McKean-Vlasov Control Problems
 • The McKean-Vlasov Control Problem
 • Martingale Optimal Transport (MOT)
 • From MOT to McKean-Vlasov Control

3. Solving the McKean-Vlasov Control Problems
 • Solving the McKean-Vlasov Control Problem
 • Back to the MOT-MKV Control Problem
The dynamic programming principle

- Let us consider a general McKean-Vlasov control problem

\[V(0, \mathcal{L}(X_0)) := \sup_{\alpha} \mathbb{E} \left[\int_0^T f(\cdots, \alpha_t) \, dt + g(X_\tau^\alpha, \mathcal{L}(X_\tau^\alpha | \mathcal{F}_T)) \right], \]

where

\[dX_t^\alpha = b(\cdot) \, dt + \sigma(\cdot) \, dW_t + \sigma_0(t, X_t^\alpha, \mathcal{L}((\alpha_t, X_t^\alpha) | \mathcal{F}_t^B), \alpha_t) \, dB_t. \]

Theorem (Dejete-Possamaï-Tan, 18)

Assume that \(f, g \) are Borel measurable, then one has the DPP:

\[V(0, \mathcal{L}(X_0)) := \sup_{\alpha} \mathbb{E} \left[\int_0^T f(\cdot) \, ds + V(\tau, \mathcal{L}(X_\tau^\alpha | \mathcal{F}_\tau^B)_{t=\tau}) \right]. \]

- Using the measurable selection arguments, no requirement on continuity of coefficients.
 - El Karoui-Tan, Possamaï-Tan-Zhou (18, AOP).
The limit thoery

- A large population control problem, \(i = 1, \ldots, N \),

\[
V_N := \sup_{\alpha} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\int_0^T f(\cdot) ds + g(X_T^{i,N,\alpha}, \varphi_T^{N,\alpha}) \right],
\]

where \(\varphi_t^{N,\alpha} := \frac{1}{N} \sum_{j=1}^{N} \delta_{X_t^{N,j,\alpha}} \) and

\[
dX_t^{N,i,\alpha} = b(\cdot) dt + \sigma(\cdot) dW_t^i + \sigma_0(t, X_t^{N,i,\alpha}, \varphi_t^{N,\alpha}, \alpha_t^i) dB_t.
\]

Theorem (Dejete-Possamaï-Tan, 18)

Under some continuity conditions, one has the convergence result:

\[
V_N \to V \text{ as } N \to \infty.
\]
Numerical approximation

- Let $\Delta = (0 = t_0 < \cdots < t_n = T)$ be a discrete time grid, we consider

$$V^\Delta_N := \sup_{\alpha} \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\sum_{k=1}^{n} f(\cdot) \Delta t + g(X_{t_n}^{i,N,\Delta,\alpha}, \varphi_{t_n}^{N,\Delta,\alpha}) \right],$$

where $\varphi_{t_k}^{N,\Delta,\alpha} := \frac{1}{N} \sum_{j=1}^{N} \delta X_{t_k}^{N,i,\Delta,\alpha}$ and

$$X_{t_{k+1}}^{N,i,\alpha} = X_{t_k}^{N,i,\alpha} + H_\Delta(t, X_{t_{k+1}}^{N,i,\Delta,\alpha}, \varphi_{t_k}^{N,\Delta,\alpha}, \alpha_{t_k}).$$

Theorem (Dejete-Possamaï-Tan, 2019?)

With good choice of functions H_Δ, one has

$$V^\Delta_N \to V \quad \text{as } N \to \infty \quad \text{and} \quad \Delta \to 0.$$

- Kushner-Dupuis’s weak convergence technique.
 - Tan (AAP, 14), Possamaï-Tan (AAP, 15), Ren-Tan (SPA, 17).
Back to the MOT-MKV problem

- Recall that

\[V_{MKV} := \sup_{(\sigma, \hat{X}^\sigma)} \mathbb{E} [\Phi(\hat{X}^\sigma)] , \]

where

\[d\hat{X}_t^\sigma = \frac{\sigma_t}{\sqrt{\mathbb{E}[\sigma_t^2|\hat{X}_t^\sigma]}} \sigma_{loc}(t, \hat{X}_t^\sigma) dW_t. \]

- Remarks:
 - One can obtain the dynamic programming principle from our previous result, but the numerical approximation falls because of lack of continuity.
 - Resolution by Pontryagin’s maximum principle for special reward functionals.
 - Discrete time counter-party (with random walk) on the equivalence of \(V_{MOT} = V_{MKV} \).