Optimal bidding strategies for digital advertising with social interactions

Huyên PHAM

Université Paris Cité, LPSM

Based on joint work with
Médéric MOTTE, Université Paris Cité, LPSM

Third Van Eenam Lecture
University of Michigan
April 14, 2022
Digital advertising and real-time bidding

- **Targeted advertising** vs traditional advertising (newspapers, TV, billboards, etc)
- Companies/advertisers can minimise ad costs by targeting directly individuals/users potentially interested by their product/service

Auctions for Ad display (in milliseconds):

- Ad exchange sends data to advertisers about page content and user’s profile
- Advertisers place bids for ad display (impression) by publisher to a given user
- The highest bidder wins the ad space
Introduction

Literature on advertising models

- Classical approach: modelling of macroscopic variables, e.g. sales process, affected by (traditional) advertising expenditure
 - Vidale, Wolfe (57), Nerlove, Arrow (62)
 - Sethi advertising models: Sethi and collaborators (1973-2020)

- Auction for digital advertising: Levin, Milgrom (10), Goke et al (21)

- Optimisation in digital advertising:
 - Supply side (publisher) perspective: Balseiro et al. (14,15), Yuan (14,15)
 - Demand side (bidders) perspective:
 - discrete time and MDP models: Amin et al. (12), Tillberg et al. (20)
 - stochastic control in continuous-time and HJB equation: Fernandez-Tapia, Guéant, Lasry (17): maximisation of number of banners displayed
Our purpose and basic framework

We address the following problem from the demand-side perspective:

- **Agent A** (company/association) willing to spread Information \(I \) to Users, e.g.
 - the existence of a new product, a new service: **commercial advertising**
 - the danger of some behaviour (drug, virus, etc): **social marketing**

- **Impression \(\rightarrow \) Click/Conversion**: Once they get the information \(I \), Users can decide to make an action, e.g.
 - purchase of the new product, subscribe to the new service
 - stop behaving unsafely

- **Attribution problem**: how to efficiently diffuse \(I \) by means of “modern” online channels (digital ad, social networks, etc) in order to generate conversion?
 - We propose a **continuous-time model for optimal digital advertising strategies**:
 - online behaviours of users, social interactions: microscopic modelling of the population
 - advertising auctions
 - targeted vs non-targeted advertising
Outline

1. The commercial advertising model
2. Social marketing model
Online behaviour of User

The User can connect at any (random) time to:

- Website providing the Information (e.g. company own website):
 \[N^I \text{ Poisson process with intensity } \eta^I : \text{ number of connections} \]

- Publisher T (social networks, search engine) not containing a priori but displaying Targeted ad:
 \[N^T \text{ Poisson process with intensity } \eta^T : \text{ number of connections}. \]

→ Data collected by Ad exchange and sent to Advertisers
Targeted ad auctions and bidding strategies

- **Targeted ad auction**: each time the User connects to a Publisher displaying targeted ads, advertisers compete to win the right to display their ad to him.

- **Model the maximal bid made by other bidders (other than the agent A)**:

 B_k^T: maximal bid of other bidders during the k-th ad auction

 We assume that $B_k^T, k \in \mathbb{N}$ are i.i.d. nonnegative r.v.

- **Bidding strategies for Agent A**. Non anticipative \mathbb{R}^+-valued process $\beta = (\beta_t)_{t \geq 0}$:

 β_t: bid that A makes if user is connecting to a Publisher at time t

 predictable w.r.t. to data information: $\sigma\{N_s^I, N_s^T, B_{N_s^T}^T, s \leq t\}$.

- **Agent A wins bid at time t ↔ N_t^T-ad auction, if**:

 $\beta_t \geq B_{N_t^T}^T.$
Conversion dynamic of the User

- Conversion state in \(\{0, 1\} \):
 - \(x = 0 \): user not aware of I
 - \(x = 1 \): user aware of I and clicks for conversion

His conversion state \(X = X^\beta \) is affected by the bidding strategy of Agent:

\[
X^\beta_{0-} = 0, \\
dX^\beta_t = (1 - X^\beta_t)(dN^I_t + 1_{\beta_t \geq B^T_N} dN^T_t), \quad t \geq 0.
\]
Conversion dynamic of the User

- Conversion state in \(\{0, 1\} \):
 - \(x = 0 \): user not aware of \(I \)
 - \(x = 1 \): user aware of \(I \) and clicks for conversion

His conversion state \(X = X^\beta \) is affected by the bidding strategy of Agent:

\[
X_0^\beta = 0,
\]
\[
dX_t^\beta = (1 - X_t^\beta)(dN_t^I + 1_{\beta_t \geq B_{N_t}} dN_t^T), \quad t \geq 0.
\]

- Assumption of spontaneous **click/conversion**: once the user gets information, he purchases the product
 - In reality, multi-stage process before a purchase decision: **conversion funnel**, see Abhisek et al (12), Jordan et al. (12), Berman (18)
 - A simplified modeling of conversion funnel can be considered here by replacing \(\eta^T \) by \(\eta^T \times q^T \), where \(q^T \) is the probability of conversion when seeing the ad (idem for \(\eta^I \leftrightarrow \eta^I \times q^I \))
Optimal bidding problem for pay-per-conversion Agent

Maximise over bidding strategies β the purchase-based gain function:

$$V(\beta) = \mathbb{E} \left[\int_0^\infty e^{-\rho t} K dX_t^\beta \right] - C(\beta),$$

where $\rho \geq 0$ is a discount rate, K is the punctual payment from the User to the Agent when he gets informed and clicks/converts, and $C(\beta)$ is the ad cost:

$$C(\beta) = \mathbb{E} \left[\int_0^\infty e^{-\rho t} 1_{\beta_t \geq B_{NT}}^T c(\beta_t, B_{NT}^T) dX_t^\beta dN_t^T \right].$$

where c is the paying rule of the auction:

- **First-price auction**: $c(b, B) = b$
- **Second-price (Vickrey) auction**: $c(b, B) = B$.
Explicit solution

\[V^* := \sup_{\beta} V(\beta) = \sup_{b \in \mathbb{R}_+} V(\beta^b), \]

where \(\beta^b \) is the constant bidding strategy: \(\beta^b_t = (1 - X_{t-}^b) b \), with gain function:

\[V(\beta^b) = \frac{\eta^T K + \eta^T \mathbb{E}[(K - c(b, B_1^T))1_{b \geq B_1^T}]}{\eta^T + \rho + \eta^T \mathbb{P}[b \geq B_1^T]}, \quad b \in \mathbb{R}_+. \]

Furthermore, any \(b_* \in \arg\max_{b \in \mathbb{R}_+} V(\beta^b) \) yields an optimal constant bidding strategy \(\beta^{b_*} \).
Properties of the solution

Monotonicity w.r.t. parameters

- V^* is increasing w.r.t. η^I, η^T, and decreasing in ρ
- The smallest optimal bid policy $b^* = \min_{b \in \mathbb{R}_+} \arg\max V(\beta^b)$ is decreasing w.r.t. η^I, η^T, and increasing in ρ

Upper bound on optimal bids

$$b^*_* \leq K - V^* \leq \frac{\rho K}{\eta^I + \rho}.$$
Outline

1. The commercial advertising model

2. Social marketing model
Welfare purpose

• Population of M users behaving unsafely (D danger!) over time

$N^{m,D}$ Poisson process with intensity 1: counting the times of D of $m \in [1, M]$

→ This incurs a cost K to Agent A (association) as long as population is in D

• A willing to alert population of users about D (and how to protect against) so that once they get the information I and are converted:
 • stop behaving unsafely (no more in D)
→ Cancels the cost for A.
Online behaviour of the population → information channels

- Any user \(m \in [1, M] \) can browse through
 - Website providing the information \(I \):
 \[
 N^{m,I} \text{ Poisson process with intensity } \eta^I : \text{ number of connections of user } m
 \]
 - Publisher \(T \) (search engine) displaying targeted ad:
 \[
 N^{m,T} \text{ Poisson process with intensity } \eta^T : \text{ number of connections of user } m
 \]
 - Platform \(NT \) displaying non-targeted ad:
 \[
 N^{m,NT} \text{ Poisson process with intensity } \eta^{NT} : \text{ number of connections of user } m
 \]
 \[
 N^{NT} := \sum_{m=1}^{M} N^{m,NT} : \text{ total number of connections to } NT \text{ of the population}
 \]
- Social interactions. \(N^{m,i,S} \) Poisson process with intensity \(\eta^S \): counting the social interactions between users \(m \) and \(i \).
- \((N^{m,D}, N^{m,I}, N^{m,T}, N^{m,NT}, N^{m,i,S})\), \(m, i = 1, \ldots, M \), are independent
Targeted and non-targeted ad auctions

- **Targeted ad auction**: each time User m connects to a Publisher displaying targeted ads, advertisers compete to win the right to display their ad.

 - Model the maximal bid made by other bidders (other than the agent A):

 $B_{m,T}^k : \text{maximal bid of other bidders during the } k\text{-th ad auction for user } m$

 We assume that $B_{m,T}^k, k \in \mathbb{N}, m \in [1, M]$, are i.i.d. nonnegative r.v.

- **Non-Targeted ad auction**: Bids are indifferent w.r.t. users of the population.

 - Model the maximal bid made by other bidders (other than the agent A):

 $B_{NT}^k : \text{maximal bid of other bidders during the } k\text{-th ad auction for any user}$

 We assume that $B_{NT}^k, k \in \mathbb{N}$ are i.i.d. nonnegative r.v., and independent of $(B_{m,T}^k)_{k,m}$.
Advertising bidding map strategies

Non-anticipative process $\beta = \{(\beta_t^m)_{m=0,...,M}, t \geq 0\}$ valued in \mathbb{R}_{+}^{M+1}:

- β_t^0 is the bid that A makes when any user is connecting to the Platform NT.
- β_t^m, $m = 1, \ldots, M$, is the bid that A makes if user m is connecting to a Publisher T at time t.
Conversion dynamic of the population of users

Conversion state $X_{m}^{m, \beta}$ in $\{0, 1\}$ of user $m \in [1, M]$ influenced by the bidding map strategy of Agent, and the other users (social interaction):

$$
\begin{aligned}
X_{0-}^{m, \beta} & = 0, \\
\frac{dX_{t}^{m, \beta}}{dt} & = (1 - X_{t-}^{m, \beta}) \left[dN_{t}^{m,1} + 1_{\beta_{t}^{m} \geq B_{m,T}^{m}} dN_{t}^{m,T}
ight. \\
& \quad \left. + 1_{\beta_{t}^{0} \geq B_{NT}^{m}} dN_{t}^{m,NT} + \sum_{i \neq m} X_{t-}^{i, \beta} dN_{t}^{m,i,S} \right], \quad t \geq 0.
\end{aligned}
$$
Optimal bidding problem for Agent

Minimize over bidding map strategies $\beta = (\beta^m)_{m \in [0, M]}$ the cost function:

$$V(\beta) = \sum_{m=1}^{M} \mathbb{E} \left[\int_{0}^{\infty} K(1 - X_{t-}^{m, \beta}) dN_{t}^{m, D} + \int_{0}^{\infty} 1_{\beta_t^m \geq B_{N_t^m, T}^m} c(\beta_t^m, B_{N_t^m, T}^m) dN_{t}^{m, T} \right.$$

$$+ \int_{0}^{\infty} 1_{\beta_t^0 \geq B_{N_t^0, T}^{NT}} c(\beta_t^0, B_{N_t^0, T}^{NT}) dN_{t}^{m, NT} \right].$$

where c is the paying rule of the auctions:

- **First-price auction**: $c(b, B) = b$
- **Second-price (Vickrey) auction**: $c(b, B) = B$.

(For simplicity of notations, we assume here the same auction rule c on T and NT but they can differ)
Explicit solution

- Minimal cost

\[V^* := \inf_{\beta} V(\beta) = \sum_{p \in \left[\frac{0,M}{M} \right]} v(p) \]

(here \(\left[\frac{0,M}{M} \right] = \{ \frac{k}{M} : k = 0, \ldots, M - 1 \} \)), where \(v(p) = \inf_{b^T,b^{NT} \in \mathbb{R}_+} v^{b^T,b^{NT}}(p) \), with

\[v^{b^T,b^{NT}}(p) = \frac{K + \eta^T \mathbb{E} \left[\mathbf{c}(b^T, B_1^T) \mathbf{1}_{b^T \geq B_1^T} \right] + \eta^{NT} \mathbb{E} \left[\frac{\mathbf{c}(b^{NT}, B_1^{NT})}{1-p} \mathbf{1}_{b^{NT} \geq B_1^{NT}} \right]}{\eta^I + \eta^T \mathbb{P} \left[b^T \geq B_1^T \right] + \eta^{NT} \mathbb{P} \left[b^{NT} \geq B_1^{NT} \right] + p \eta^S} \].
Explicit solution

- Minimal cost

\[V^* := \inf_{\beta} V(\beta) = \sum_{p \in \mathbb{I}_{0,M}} v(p) \]

(here \(\mathbb{I}_{0,M} = \{k/M : k = 0, \ldots, M-1 \} \)), where \(v(p) = \inf_{b^T, b^{NT} \in \mathbb{R}_+} b^T, b^{NT} (p) \), with

\[v^{b^T, b^{NT}} (p) = \frac{K + \eta^T \mathbb{E}[c(b^T, B^T_1)\mathbb{1}_{b^T \geq B^T_1}] + \eta^{NT} \mathbb{E}[c(b^{NT}, B^{NT}_1)\mathbb{1}_{b^{NT} \geq B^{NT}_1}]}{\eta^T \mathbb{P}[b^T \geq B^T_1] + \eta^{NT} \mathbb{P}[b^{NT} \geq B^{NT}_1] + p \eta^S}. \]

- Optimal bidding map policies based on proportion of informed users:

\[(b^T_*(p), b^{NT}_*(p)) \in \arg\min_{b^T, b^{NT} \in \mathbb{R}_+} v^{b^T, b^{NT}} (p), \quad p \in \mathbb{I}_{0,M}, \]

→ optimal bidding map strategy \(\beta^* = (\beta^*, m)_{m \in \mathbb{I}_{0,M}} \) with \(p^\beta_t := \frac{1}{M} \sum_{i=1}^M X^i_{t^{\beta}}, \)

\[\begin{cases}
\beta^*_t = b^T_*(p^\beta_{t-})(1 - X^m_{t^{\beta}}), & m = 1, \ldots, M, \\
\beta^*_0 = b^{NT}_*(p^\beta_{t-})1_{p^\beta_{t-} < 1}, & t \geq 0.
\end{cases} \]
Remarks on proof

- Direct arguments: do not rely on dynamic programming or maximum principle methods

- Change of variable: reformulate the problem $V(\beta)$ defined as a sum over the Poisson processes to an integral over proportion of converted users p^β
 - martingale tools using intensity process of Point process

- Bound from below minimal cost

- Achieve the lower bound with a suitable bidding policy.
Properties of the solution

Monotonicity w.r.t. intensity parameters $\eta = (\eta^I, \eta^T, \eta^{NT}, \eta^S)$

- V^* is decreasing w.r.t. η
- The smallest optimal bid policies $b^T_*(p), b^{NT}_*(p)$ are decreasing w.r.t. η

Monotonicity w.r.t. proportion of converted users p

- The smallest optimal bid policy for non-targeted ad $b^{NT}_*(p)$ is decreasing in p
- The smallest optimal bid policy for targeted ad $b^T_*(p)$ is
 - decreasing in p when there is no non-targeted ad ($\eta^{NT} = 0$)
 - increasing in p when there is no social interactions ($\eta^S = 0$)

Upper bound on optimal bids

$$b^T_*(p), b^{NT}_*(p) \leq v(p) \leq \frac{K}{\eta^I + p\eta^S}.$$
Computational cost of optimal bids

- Algo implementation of optimal bids require to compute:

\[b_T(p), \ b_{NT}(p), \quad \text{for all } p = \frac{k}{M}, \ k = 0, \ldots, M - 1. \]

→ This is a priori quite expensive when \(M \) is large!
Computational cost of optimal bids

• Algo implementation of optimal bids require to compute:

\[b^T_*(p), \ b^{NT}_*(p), \ \text{for all } p = \frac{k}{M}, \ k = 0, \ldots, M - 1. \]

\[\rightarrow \] This is a priori quite expensive when \(M \) is large!

• But, taking advantage of the monotonicity in \(p \) of \(b^T_*(p), \ b^{NT}_*(p) \), one can proceed by dichotomy

\[\rightarrow \] Computational complexity is of order \(O(\ln_2(M)) \)

e.g. for \(M = 7 \times 10^9 \), we have \(\ln_2(M) = 30 \).
Mean-field problem: $M \to \infty$

The average of the minimal cost $V^* = V^*_M$ converges to:

$$\frac{1}{M} V^*_M \to \int_0^1 \nu(p) dp.$$

This corresponds formally to the optimal control problem on the proportion of converted users:

$$\frac{dp^\beta_t}{dt} = (1 - p^\beta_t) \left(\eta^I + \eta^T \mathbb{P}[\beta^T_t \geq B^T_1] + \eta^{NT} \mathbb{P}[\beta^{NT}_t \geq B^{NT}_1] + \eta^S p^\beta_t \right), \quad t \geq 0,$$

with deterministic control $\beta = (\beta^T, \beta^{NT})$ and cost functional

$$V^*_\infty(\beta) = \int_0^\infty \left\{ (1 - p^\beta_t) \left(K + \eta^T \mathbb{E} [c^T(\beta^T_t, B^T_1) 1_{\beta^T_t \geq B^T_1}] \right)
+ \eta^{NT} \mathbb{E} [c^{NT}(\beta^{NT}_t, B^{NT}_1) 1_{\beta^{NT}_t \geq B^{NT}_1}] \right\} dt.$$

$$\to \inf_{\beta} V^*_\infty(\beta) = \int_0^1 \nu(p) dp.$$
Conclusion

- Formulation and (explicit) resolution of some advertising problems
 - Microscopic modelling of users: online behaviour
 - Digital feature of advertising, auctions for ad display
 - Quantitative comparison between targeted vs non-targeted advertising
 - Role of social interactions between users

- Enrich models for more realism while keeping tractable
 - Conversion funnel for user to be receptive or not to the information:
 - purchase or not a product
 - stop or continue to behave unsafely
 - Some heterogeneity in the population
 - Auctions:
 - maximal bid of others bidders by Markov process
 - several bidding agents in fictitious play to learn the law of the maximal bid

Thank you for your attention