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Abstract

One of the previous articles in this column was devoted to the zero-one
laws for a number of logics playing prominent role in finite model theory:
first-order logic FO, the extension FO+LFP of first-order logic with the least
fixed-point operator, and the infinitary logic Lg, ,,. Recently Shelah proved
a new, powerful, and surprising zero-one law. His proof uses so-called strong
extension axioms. Here we formulate Shelah’s zero-one law and prove a few
facts about these axioms. In the process we give a simple proof for a “large
deviation” inequality a la Chernoff.

1 Shelah’s Zero-One Law

Quisani: What are you doing, guys?

Author: We? are proving a zero-one law which is due to Shelah.
Q: Didn’t Shelah prove the law?

A: Oh yes, he proved it all right, and even wrote it down [14].

Q: So what is the problem? Can’t you read his proof?
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A: Reading Shelah’s proofs may be research in its own right. His great mathematical
talent is not matched by his talent of exposition.

Q: T suspect that you don’t limit yourself to reproving Shelah’s theorem.
A: We have proved some related results [1].

Q: Tell me about this zero-one law which is exciting enough to divert your attention
from abstract state machines.

A: Actually the law is related to ASMs. It is about the BGS model of computation
[3] which is based on ASMs. The model was defined with the intention of modeling
computation with arbitrary finite relational structures as inputs, with essentially
arbitrary data types, with parallelism, but without arbitrary choices.

Q: What arbitrary choices?

A: Here’s an example of what we mean. Recall the Bipartite Matching Problem:
Given a relation A between some number of boys and the same number of girls,
find a subset of A that constitutes a one-to-one correspondence between the boys
and the girls. The problem is solvable in polynomial time in the usual computation
models where the input bipartite graph is given by means of some presentation such
as the adjacency matrix; see for example the book [9]. Having such a presentation,
the algorithm may start with the first boy. A BGS algorithm may be unable do
that. The reason is that, contrary to the usual computation models, the bipartite
graph may be given directly and not via some representation. In particular there
may be no notion of “first.” And there may be no way to choose an arbitrary boy.

Q: With parallelism, the lack of a choice mechanism makes no difference. An algo-
rithm can produce all possible linear orderings of its input. If the input has size
n, you have n! independent subcomputations, each using one of the orderings to
make whatever choices are needed. I guess the output is supposed to depend only
on the isomorphism type of the input. So all these computations produce the same
output.

A: That’s right, if you have unlimited resources. We require the total computation
time (summed over all parallel subprocesses) to be polynomially bounded. So there
isn’t time to construct all the linear orderings. The inability to make arbitrary
choices really matters. According to [3], choiceless polynomial time, CPTime, the
complexity class defined by BGS programs subject to a polynomial time bound,
does not contain the Bipartite Matching Problem. In fact, CPTime does not
contain even the parity problem: Given a set, determine whether its cardinality is
even. The proofs build on symmetry considerations, i.e., on automorphisms of the
input structure.



Subsequently, Shelah [14] proved a zero-one law for CPTime properties of graphs
and similar structures. Notice a crucial difference from the earlier results in [3]:
Almost all finite graphs have no non-trivial automorphisms, so symmetry consid-
erations cannot be applied to them. Shelah’s proof therefore depends on a more
subtle concept of partial symmetry.

Q: We spoke once about zero-one laws [10]. I remember that one distinguishes,
at least in principle, between labeled and unlabeled structures. In the case of
labeled structures, one assumes that the base set of an n-element structure is the
set {1,2,...,n}. The labels 1,... ,n help us in counting but they do not belong
to the vocabulary of the structure. More importantly, a zero-one law requires a
probability distribution on structures.

A: For simplicity, let us restrict our attention to labeled structures and the uniform
probability distribution. Define the probability of a class (assumed closed under
graph isomorphisms) of n-vertex graphs by considering all graphs with vertex set
{1,2,...,n} to be equally probable. This probability measure can also be defined
by saying that, for each potential edge, i.e., each set of two distinct vertices, we
flip a fair coin to decide whether to include the edge in our graph. It is presumed
that the coin flips are independent.

The asymptotic probability of a class of graphs is defined as the limit, as n — oo,
of the probability of its intersection with the class of n-vertex graphs with vertex
set {1,2,...,n}. We sometimes refer to the probability of a property of graphs,
meaning the probability of the class of graphs that have that property. In general,
a zero-one law says that definable classes have asymptotic probability 0 or 1, but,
as we shall see, some care is needed in formulating the zero-one law for CPTime.

Q: Explain CPTime.

A: To this end, we need to describe the BGS model of computation [3]. It is a version
of the abstract state machine (ASM) paradigm [11]. The input to a computation
is an arbitrary finite relational structure. For simplicity, let us restrict attention
to the case when the input is an undirected, loopless graph (V, A) where V' is the
set of vertices and A is the adjacency relation. A state of the computation is a
structure whose base set is the set HF (V') which consists of the set V' together with
all hereditarily finite sets over it. HF(V') is the smallest set containing all vertices
in V' (which are assumed to be atoms, not sets) and all finite subsets of itself. In
other words, it is the union of the sets P, (V') defined inductively by

Po(V) =V
Prt1(V) = VUPsuu(Pu(V)),

where Py, (X) means the set of all finite subsets of X.



The structure has the adjacency relation A, some set-theoretical apparatus (for
example the membership relation €), and some dynamic functions. The compu-
tation proceeds in stages, always modifying the dynamic functions in accordance
with the program of the computation. The dynamic functions are initially constant
with value () and they change at only finitely many arguments at each step. So,
although HF(V') is infinite, only a finite part of it is involved in the computation
at any stage. The computation ends when and if a specific dynamic 0-ary function
Halt acquires the value true = {0}, and the result of the computation is then the
value of another dynamic 0O-ary function Output.

Q: Why true = {0}?

A: We have adopted the convention that the truth values are identified with the first
two von Neumann ordinals, false = 0 = () and true = 1 = {0}. Recall that the

finite von-Neumann ordinals represent the natural numbers by identifying n with
the set {0,1,...,n —1}.

This model was used to define choiceless polynomial time CPTime by requiring
a computation to take only polynomially many (relative to the size of the input
structure (V, A)) steps and to have only polynomially many active elements.

Q: Which elements are active?

A: Roughly speaking, an element of HF (V') is active if it participates in the updating
of some dynamic function at some stage.

Further, Output was restricted to have Boolean values, so the result of a compu-
tation could only be true, or false, or undecided.

Q: T guess the “undecided” situation arises if the computation exhausts the allowed
number of steps or the allowed number of active elements without Halt becoming
true.

A: Precisely. We shall use the phrase polynomial time BGS program to refer to
a BGS program, with Boolean Output, together with polynomial bounds on the
number of steps and the number of active elements.

Two classes Ky and Ky of graphs are CPTime-separable if there is a polynomial
time BGS program IT such that, for all input structures from Ky (resp. Kq), 11
halts with output false (resp. true) without exceeding the polynomial bounds.
It doesn’t matter what IT does when the input is in neither g nor K;.

Theorem 1.1 (Shelah’s Zero-One Law) If Ky and K, are CPTime-separable
classes of undirected graphs, then at least one of Ky and Ky has asymptotic proba-
bility zero.



An equivalent formulation of this is that, for any given polynomial time BGS
program, either almost all graphs produce output true or undecided or else almost
all graphs produce output false or undecided.

Q: Is it true that either almost all graphs produce true, or almost all produce false,
or almost all produce undecided?

A: No, we can give you a counterexample, but this would require a more thorough
review of the definition of BGS programs.

The theorem was, however, strengthened considerably in another direction in [14].
It turns out that the number of steps in a halting computation is almost indepen-
dent of the input.

Theorem 1.2 Let a BGS program 11 with Boolean output and a polynomial bound
for the number of active elements be given. There exist a number m, an output
value v, and a class C of undirected graphs, such that C has asymptotic probability
one and such that, for each (V, A) € C, either

o II on input (V, Ay halts after exactly m steps with output value v and without
exceeding the given bound on active elements, or

o 11 on input (V, A) either never halts or exceeds the bound on active elements.

The proof of the theorem gives a somewhat more precise result. If there is even one
input (V, A) € C for which IT eventually halts, say at step m, without exceeding
the bound on active elements, then in the second alternative in the theorem the
computation will exceed the bound on active elements at or before step m.

Notice that this theorem does not assume a polynomial bound on the number of
steps. It is part of the conclusion that the number of steps is not only polynomially
bounded but constant as long as the input is in C and the number of active elements
obeys its bound.

Intuitively, bounding the number of active elements, without bounding the number
of computation steps, amounts to a restriction on space, rather than time. Thus,
Theorem 1.2 can be viewed as a zero-one law for choiceless polynomial space com-
putation.

Q: Is the BGS logic more powerful than the extension FO+LFP of first-order logic
with the least fixed-point operator?

A: Yes, every property definable in FO+LFP is CPTime, and there are CPTime
properties that are not definable in FO+LFP. The BGS logic is quite expressive
[4].



Q: In the case of FO+LFP, the almost sure theory, that is the set of sentences with
asymptotic probability 1, is decidable. What about the almost sure theory of the
BGS logic?

A: Tt is undecidable.

Proposition 1.3 The class of almost surely accepting polynomially bounded BGS
programs and the class of almost surely rejecting polynomially bounded BGS pro-
grams are recursively inseparable.

The proof is easy. We can sketch it for you. Consider Turing machines with two
halting states h; and ho. For i = 1,2, let H; be the collection of Turing machines
that eventually halt in state h; if started on the empty input tape. It is well-known
that H; and Hy are recursively inseparable. Associate to each Turing machine T
a polynomial time BGS program as follows. The program II ignores its input
graph and simulates 7" on empty input tape (working exclusively with pure sets).
IT outputs true (resp. false) if 7 halts in state hy (resp. hg). The polynomial
bounds on steps and active elements are both twice the number of atoms. Then
it T € Hy (resp. T € Hs) our polynomial time BGS program will accept (resp.
reject) all sufficiently large inputs.

Q: A question about the class C in Theorem 1.2. Do you just prove the existence of

it?

A: The class C has a fairly simple description. It consists of the graphs that satisfy
the so-called strong extension axioms for up to some number n of variables. The
parameter n can be easily computed when the program II and the polynomial
bound on the number of active elements are specified.

2 Strong Extension Axioms

Q: What are strong extension axioms?
A: Do you remember the ordinary extension axioms?

Q: It would be good to review them. I remember though that the extension axioms
played a key role in the zero-one law for first-order logic, that they explained the
mystery of that law.

A: The ordinary extension axioms (for graphs) assert the existence of vertices in any
possible “configuration” relative to finitely many given vertices; strong extension
axioms assert not only existence but plentitude.



More precisely, a k-parameter type is a formula 7(y, 1, ..., zx) of the form

N W # i A +(yAzy)).

1<i<k

Here + before a formula means that the formula may or may not be negated.
So 7 specifies the adjacency and non-adjacency relationships between y and the
k parameters z;; in addition, it says that y is distinct from the z;’s (which is
redundant when yAz; is not negated, since the adjacency relation A is irreflexive).
The extension aziom EA(T) associated to a type 7 is

Vo, ...,z (( /\ xi%%)—>E|y7'(y,x1,...,xk.)>.

1<i<j<k

For a fixed k, there are 2% of these extension axioms, because of the k choices for
the £ signs in 7. We write EAj for their conjunction together with the statement
that there are at least k vertices (so that the EA(7)’s aren’t vacuous). Thus, EAy
says that there exist at least k vertices and that every possible configuration for a
vertex y, relative to k distinct, given vertices, is realized at least once.

We say that a graph satisfies the strong extension azxiom SEA(T) if, for ev-
ery k distinct vertices x1,...,x;, there are at least %n/?k vertices y satisfying
7(y,x1,...,2x). Unlike the extension axioms, strong extension axioms are not
first-order formulas. We write SEA;, for the conjunction of all 2% of the strong ex-
tension axioms SEA(7) as 7 ranges over all the k-parameter types, together with
the statement that there are at least k vertices. Thus, SEA, says that there exist
at least k vertices and that each possible configuration of y relative to k distinct
;s is realized not just once (as EAy says) but fairly often, $n/2* times.

Q: I remember seeing somewhere a stronger version of extension axioms.

A: Phokion Kolaitis and Moshe Vardi introduced a version of strong extension axioms
with y/n instead of %n/ 2%, They proved that their extension axioms were almost
surely true and then used the axioms to derive a zero-one law for a fragment of
second-order logic [12].

Q: Where did that number $n/2* come from?

A: Consider any particular k-parameter type with fixed values for the k parameters,
say 7(y, ai,...,ax). On the average, how many vertices would you expect to realize
this type?

Q: Well, since 7 says that y is distinct from all the a;, there are n — k vertices that
could conceivably realize 7, and each of them has probability 1/2* of realizing 7.
So the expected number of realizers is (n — k) /2.



A: Right. Since k is fixed and we are interested in asymptotics for large n, this
expected number is very nearly n/2*.

Q: And the strong extension axiom says that the type has at least half the expected
number of realizers. That sounds plausible, but why “halt”?

A: It doesn’t matter. We could use any constant strictly smaller than 1, and % is
the simplest choice. The analogous axiom with a constant « in place of % will be
denoted by SEAY.

Q: I said the strong extension axiom sounds plausible, but now I think that it is
definitely true.

A: You are right.

Proposition 2.1 For each k, the asymptotic probability of SEAy is 1.

Q: I see how to prove it, using the central limit theorem. Here’s the idea. First,
I can ignore the distinction between n — k£ and n as you suggested, because it
can be compensated for by slightly increasing the % So let me pretend there are
n rather than n — k vertices that could conceivably realize 7(y, a1, ...,a;). The
number of these vertices that actually realize it is a Bernoulli random variable X
with mean n/2* and standard deviation proportional to y/n. I don’t remember the
constant of proportionality, but I don’t think it’ll matter. So for 7(y, a1, ..., ax) to
be realized fewer than the desired number of times would mean that X differs from
its mean by an amount linear in n, and that’s more than some constant times y/n
standard deviations. That probability can be estimated, for large n, by the central
limit theorem, and it decreases exponentially (or at least like exp(—y/n) — again
[ don’t remember exactly but it won’t matter). Now there are only polynomially
many (at most n*) choices for ay,...,a;, so the probability that some choice of

the a;’s has fewer than the desired number of 4’s realizing 7 still approaches zero.

A: This sounds good, but unfortunately the central limit theorem doesn’t quite
provide the information you need.

Q: What’s the problem?

A: Well, the central limit theorem says that, as n approaches infinity, the probability
that a Bernoulli random variable is more than ( standard deviations below its mean

approaches
! / v ( 1752) dt
— exp | —= X
V2ot J_wo P 2

But it says this for each fixed (3, not for a # that depends on n. And you needed
a (3 proportional to y/n.



Q: I guess you're right. So is there a better version of the central limit theorem that
salvages the argument?

A: Actually, there’s an extensive theory of so-called large deviations, designed to
handle just this sort of thing. To establish that the strong extension axioms have
asymptotic probability one, we need only a little bit of that theory — a version of
Chernoft’s inequality [7].

Lemma 2.2 Fiz numbers [3,r in the open interval (0,1). There is a constant c,
also in (0,1), such that the following is true for every positive integer m. Let X
be the number of successes in m independent trials, each trial having probability r
of success. Then Prob[X < pmr| < ™.

That is, the probability that the number of successes (X) is smaller than the
expected number (mr) by at least the (fixed) factor 5 decreases exponentially as
a function of the number m of trials. The proof of this proposition depends on a
“large deviation” inequality of the sort given in Chernoff’s paper [7] and Loeve’s
book [13, Section 18|. The references we have found prove stronger results than
we need and therefore give more complicated proofs than we need. But here is a
simple proof of an inequality strong enough for our purposes.

Proof  We begin with the well-known observation that, if Z is a non-negative
random variable and ¢ is a positive real number, then

E(Z
Prob[Z > q| < 7),

q
where F/ means “expectation.” Indeed,
E(Z) = E(Z|Z > q)Prob[Z > q]+ E(Z|Z < q)Prob [Z < ¢]

E(Z|Z > q)Prob[Z > ¢
q-Prob[Z > ¢|.

We apply this with Z = explt(mr — X)|, where t is a positive parameter to be
chosen later. Thus, we have

Prob[X < pmr] = Prob[Z > explt(mr — Bmr)]]
Prob [Z > expltmr(1 — ()]
E(Z)
exp[tmr(l — B)]



We continue by computing F(7). The random variable mr — X can be viewed as
the sum, over all m trials, of r — S, where S is 1 if the trial is a success and 0
if not. Thus, Z is the product over all trials of exp[t(r — S)]. But the trials are
independent, so the expectation of this product is the product of the individual
expectations. For each individual trial, we have

E(explt(r —S)]) = r-exp[t(r—1)]+ (1 —7)-exp[t(r—0)]
= exp|tr](rexp[—t] +1—r1).

Therefore,
E(Z) = exp[tmr]|(rexp[—t] + 1 —r)™.

Substituting this into the inequality for Prob [X < Gmr|, we find

Prob [X < Bmr] < <exp[t7"](r exp[—t] + 1 — r)>m

exp[ir(l — )]
= [exp[tfr]- (rexp[—t] +1—r)|™.

So the lemma will be proved if we can find a positive ¢ for which the value of
f(t) = exp[tpr] - (rexp[—t] +1—7)

is in the open interval (0, 1), for then this value can serve as the required c.

Notice that f(0) = 1 and that

f'(t) = BrexpltBr] - (rexp[—t] + 1 — 1) + exp|tBr] - (—r) exp[—t].

Thus, f'(0) = Br —r < 0 (because 5 < 1 and r > 0). Therefore, any sufficiently
small positive t will give 0 < f(¢) < 1 as required. O

Q: The best, i.e., smallest value of ¢ obtainable by the preceding argument is the
minimum value of f(t).

A: Right. A routine calculation, setting f’(t) = 0, shows that this minimum is

L—r \"77" I\
(1—ﬂr) (ﬂ)

Notice that this is the weighted geometric mean of two quantities whose corre-
spondingly weighted arithmetic mean is

(125) -+ (3) o0

10



Since the two quantities are not equal to 1 (as < 1), the arithmetic-geometric
mean inequality shows again that the optimal c is smaller than 1.

Q: Now prove the proposition.

A: All right.

Proof of Proposition 2.1 ~ We shall show that, for each fixed k-parameter type 7,
the probability that SEA(7) fails, in a random graph on vertex set {1,2,...,n},
approaches 0 as n — oco. Then, as SEA; is the conjunction of a fixed number
2% (independent of n) of SEA(7)’s, its probability of failure also approaches 0, as
required.

So we concentrate henceforth on a single 7. Temporarily, also concentrate on
k specific, distinct vertices ay,...,ar € {1,2,...,n}. Let X be the number of
vertices b satisfying 7(b, a1, ...,ax). In a random graph, each of the n — k vertices
other than ay, ..., a; has probability 1/2* of satisfying 7, and these n — k trials are
independent. So, applying the lemma with m = n — k, with r = 1/2*, and with
some [ in the interval (%, 1), and noting that, as 3 > %, we have - (n — k) > %n
for large n, we obtain some ¢ € (0, 1) such that

Prob [X < ;n/Qk} < Prob [X < B(n —k)/2"]

S CTL*]C
This bounds the probability that our specific choice of a,...,a; is a counterex-
ample to SEA(T).
Now un-fix ai,...,a. Since the number of choices for this k-tuple is < nF, the

probability that at least one choice gives a counterexample, i.e., the probability

that SEA(7) fails, is at most
nkcn—k.

Since 0 < ¢ < 1, this bound approaches 0 as n — oo. 0

The same proof can be used to show that, for each k and each a € (0,1), the
axiom SEAj has asymptotic probability 1.

3 Inadequacy of Extension Axioms

Q: You needed strong extension axioms to define the class C in Theorem 1.2. Might
the ordinary extension axioms suffice to define C? Maybe the use of strong exten-
sion axioms is just an artifact of the proof.

11



A: Ordinary extension axioms are too weak to support the zero-one law for CPTime.
We will show you a particular polynomial-time BGS program that separates struc-
tures satisfying arbitrarily many extension axioms. So strong extension axioms are
really needed for the CPTime zero-one law.

Though our general policy has been, for expository purposes, to concentrate on
algorithms whose inputs are graphs, this program will use as input a graph together
with a single distinguished vertex, i.e., a rooted graph. That is, we add a constant
symbol d to the vocabulary { A} of graphs. We expect that a similar example could
be given without introducing the constant symbol.

Notice that the zero-one laws for the logics that you mentioned above, e.g.
FO+LFP, continue to hold and to follow from the extension axioms, in the presence
of a distinguished vertex.

Q: They fail when there are two distinguished vertices, because these two are adjacent
with probability %

A: Right. But one distinguished vertex is benign. Instead of a distinguished vertex,
we could add a unary relation R to the vocabulary and modify the extension
axioms to specify, in addition to adjacency information, whether y should satisty
R. In that version of the construction, R would play the role played in our proof
by the set of neighbors of d.

Proposition 3.1 There is a polynomial time BGS program 11 such that, for any
given k, there are two rooted graphs, both satisfying FAy, such that 11 produces
output true on one of them and false on the other.

Proof  We begin by exhibiting the BGS program II; the polynomial bounds on
the number of steps and the number of active elements will be n and 2n + 3,
respectively. The program II computes the parity of the maximum size of a clique
containing the distinguished vertex d. It does this by building up the collection of
all i-element subsets of {z : xAd} for i = 0, 1,..., checking at each step whether
any cliques remain. One essential ingredient of the proof will be that d has so
few neighbors in our graphs that the time used by this computation is polynomial

relative to the sizes of these graphs.

IT uses four dynamic 0-ary function symbols: Halt, Output, Mode, and C. Recall
that in the initial state of a computation these have the value ) = false = 0. The
program II is

12



do in parallel
if Mode = 0 then
do in parallel
C := {0}, Mode :=1
enddo
endif
if Mode =1 then
do in parallel
C:={zU{y}:z€C yecAtoms: yAd Ny ¢ =},
Output := —Output, Mode := 2
enddo
endif
if Mode =2 then
if (e € C)(Vu,v € x) uAv
then Mode :=1
else Halt := true
endif
endif
enddo.

After the first part of 11, with Mode = 0, has been executed, C' is initialized to {0},
the family of O-element subsets of the set R of neighbors of d. After ¢ executions of
the part with Mode = 1, C' has become the family of i-element subsets of R. The
part with Mode = 2 checks whether there are any cliques in C. If so, we return to
Mode 1 to enlarge the sets in (; if not, then the common size 7 of the sets in C' is
one more than the maximum size of a clique included in R. Since Output reverses
its truth value at each Mode 1 step and since it is initially false, we see that, the
final value of Output is true if and only if the maximum clique size in R is even,
if and only if the maximum size of a clique containing d is odd.

Let us estimate the number of steps and the number of active elements in a com-
putation of our program. Writing n for the number of vertices in the input graph,
r for the number of neighbors of d, and s for the maximum size of a clique among
these neighbors, we find that the Mode 0 part of 11 is executed once and the Mode 1
and Mode 2 parts are executed s + 1 times each. So the whole computation takes
2s + 3 steps.

According to the definition in [3], the truth values, the atoms and the set of atoms,
altogether n + 3 entities, are active already in the initial state. The elements that
the computation activates are the number 2 (which is one of the values of Mode),
the subsets of R of cardinality at most s + 1 and the s+ 2 values taken by C'. For
non-trivial values of » and s, the number of activated elements is easily seen to be
majorized by (r + 1)**L.

13



Q: But 0 is also among the subsets of R and 1 = {0} is also among the values of C.

A: So we have a slight overcount of activated elements. In any case, the total number
of active elements in this computation is at most n+3+ (r+1)***. We shall design
our graphs to have quite small r and s (relative to n), so that n + 3 + (r + 1)5*!
is below the bound 2n + 3 that we imposed on the number of active elements, and
2s + 3 is below the bound n on the number of steps.

The graphs required in the proposition will be described in three steps. First,
we give a general description depending on two parameters: the (large) number
n of vertices and the (much smaller but still rather large) number 7 of neighbors
of d. Second, leaving n arbitrary (but large), we prescribe two values for r, to
produce the two graphs we want. Finally, we fix n so large that these graphs
have all the required properties. Actually, the description in the first step involves
randomization, and rather than fixing n in the last step we simply show that, for all
sufficiently large n, the graphs have the required properties with high probability.
This clearly suffices for the existence claim in the proposition.

Given n and r, we build a (random) graph G(n,r) as follows. The vertex set con-
sists of the distinguished vertex d and n—1 others which we denote by 1,2, ..., n—1.

Q: This introduces an ambiguity, since these vertices are atoms in HF'(I) and the
same symbols denote natural numbers (finite von Neumann ordinals) which are
sets.

A Fortunately, the ambiguity never leads to a confusion. Let’s proceed. d is adjacent
to the vertices 1,2, ..., 7 and no others. The rest of the adjacency relation is chosen
at random; flip independent, fair coins for all potential edges to decide whether to
include them in the graph. This completes the description of G(n,r). Notice that
the subgraph induced by the set R = {1,2,...,r} of neighbors of d is a random
graph (in the usual sense) on 7 vertices.

The next part of the proof, choosing r as a function of n, is the most delicate. We
need r small enough so that II stays within the bound on active elements, but if
we take r too small then G(n,r) will violate the extension axioms. We need the
following result from [6, Section XI.1].

Lemma 3.2 There is a function p from natural numbers to natural numbers with
the following two properties. First,

C152°/% < p(s) < Cys2°/?

for certain positive constants Cy and Cy. Second, if p(s) denotes the probability that
a random graph on p(s) vertices has mazimum clique size exactly s, then p(s) — 1
as s — 0.

14



Actually, Bollobds proves a far more precise result. The constants in the lemma
can be taken to be any constants satisfying C; < 1/(ev/2) < Cy provided s is
sufficiently large. All we shall need, however, is the lemma as stated.

Using this lemma, we associate to each (large) n two values of 7 as follows. Let s
and s’ be the two largest integers below 3 log log n.

Q: What is the base of logarithm?

A: We use log to mean base 2 logarithm and In to mean base e logarithm.

Let 7 = p(s), ' = p(s'), G = G(n,r), and G’ = G(n,r’). According to the lemma,
when n is large enough there is a very high probability that, among the neighbors
of d, the largest clique in GG has size s and similarly for G’ and s’. In particular,
since s and s" are consecutive integers, the program Il will (unless it runs out of
time) produce output true for one of G and G’ and false for the other.

We next address the question whether 1T with these inputs G and G’ succeeds in
carrying out its computation within the bounds on the number of steps (n) and
active elements (2n + 3). We already computed the number of steps and an upper
bound for the number of active elements. In the present context, these are, with
high probability for large n,

2s+3 < 3loglogn+3<n

and .
n+3+ (r+ 1) <n+ 3+ (Cs52%%)°

for G (where Cj is slightly larger than C5 to compensate for changing from r+1 to
r), and similarly for G’ with s’ and " in place of s and r. So the bound on steps is
satisfied with high probability for sufficiently large n. As for the bound on active
elements, we must show that

(03823/2)S+1 S
To this end, we first compute that, since s < 3loglogn,
(3522 < C5 - 3loglogn - (logn)*? < (logn)?

for large n. The desired inequality follows because the logarithm of its left side is
at most

(s+ 1) log ((logn)?) < (3loglogn + 1) - 2loglogn < logn.

To complete the proof of the proposition, we must still verify that (with high
probability, when n is large) G and G’ satisfy EA;. We give the argument for G it
applies equally well to G'. Recall that GG was defined as G(n,r) with n sufficiently
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large and r = p(s) > C152°/2, where s is one of the largest two integers below
3loglogn. In particular, s > 2loglogn (for large n), and so

r > C;-2loglogn - logn = v(n)logn,

where all we need to know about v(n) = C; - 2loglogn is that it tends to infinity
with n. We can therefore complete the proof by showing that, for each fixed k-
parameter type 7, the probability that G(n,r) satisfies EA(7) is close to 1 when n
is large and r > ~y(n) logn.

Fix, therefore, an arbitrary k-parameter type 7, and temporarily fix values
ai,...,ar for its parameters. There are three cases to consider, according to
whether d is among the parameters and, if it is, whether 7 says y should be ad-
jacent or non-adjacent to d. Since d has so few neighbors (only 7, compared with
approximately 1/2 for other vertices), the probability that 7(y,as, ..., ax) holds is
smallest in the case where some a; is d and 7 says y is adjacent to d. We calculate
this case first and then indicate the changes for the other cases.

So suppose 7 says y must be adjacent to d. Then the only candidates for values of
y satisfying 7 are the r neighbors 1,2,...,7 of d. For any one of these neighbors b,
distinct from the other parameters, the probability that it satisfies 7, i.e., that it
satisfies £ — 1 additional adjacency or non-adjacency requirements each of which
has probability %, is 1/2%71. Since these probabilities are independent for different
b’s and since there are at least r — k + 1 available b’s (the r neighbors of d minus
at most k — 1 that are among the other parameters),

1 r—k+1
Prob [no b satisfies 7(y, a1, ...,a;)] < (1 — 2k1)

< e (r—kt1)/2t

— )

where we used the fact that 1 —t < e™".

In the case where d is one of the parameters but 7 says that y is not adjacent to d,
the computation works the same way but with n — r — k in place of r — k+ 1. In
the case where d is not one of the parameters, the result is again similar but with
(n—k)/2 in place of r — k+ 1. In either of these cases, r — k + 1 has been replaced
with something larger (when n is large), so the upper bound for the probability
of failure is even smaller than in the first case. Summarizing, we have, for every
choice of k distinct parameters, an upper bound of e~ (" *+1)/ 2 for the probability
that 7 has no solution. Therefore, the probability that EA(7) fails is at most

<Z> e~ (r—k+1)/2871 < nke—(r—k+1)/2""1

To estimate this, we consider its natural logarithm, which is at most

—k+1 1
klnn — 2k_j < —7(7;)]6_0?” + kInn + constant.
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Since y(n) — oo as n — oo, the right side of this formula tends to —oco. So our
upper bound for the probability that EA(7) fails tends to 0 as n — cc. U

It should perhaps be pointed out explicitly that the graphs constructed in the
preceding proof violate SEA;, for the number of neighbors of the special vertex d
is far smaller than the n/4 that SEA; would require.

4 Rigidity and Hamiltonicity

Q: From the conversation [10] I remember that almost all finite graphs are rigid® but
rigidity does not follow from the ordinary extension axioms. Does it follow from
strong extension axioms?

A: No dice.

Proposition 4.1 For any k, there exists a non-rigid graph satisfying SEA;.

Proof ~ We use the same randomizing construction as in [5]. Let [ be a large
natural number, and let G(I) have the integers from —I through [ as vertices. We
require that, if a is adjacent to b, then —a is adjacent to —b; this ensures that G({)
is not rigid, for a — —a is a non-trivial automorphism. Except for this symmetry
requirement, G(I) is random. That is, for each pair of corresponding potential
edges {a,b} and {—a, —b}, we decide whether to include both or neither in G(I)
by flipping a fair coin. We shall show that, for any fixed k, the probability that
the graph G(l) satisfies SEA;, tends to infinity with .

Q: The pair of potential edges {a, b} and {—a, —b} is a single potential edge if a = —b,
but I guess this does not change anything.

A: Right. As usual, it suffices to check the asymptotic probability for SEA(T) for
every single k-parameter type 7. So let 7 be given, and temporarily fix values
ai,...,a, for the parameters. Let b range over positive vertices different from
all the £a;’s. For each such b, the probability that it satisfies 7 with our fixed
parameters is 1/2%, and for different b’s these probabilities are independent. By
Lemma 2.2, for any § € (0, 1), the probability that fewer than 3 - % -27F of these
b’s satisfy 7 decreases exponentially with [. Of course the same goes for negative
b’s. Therefore, the same goes for the probability that fewer than 3 - (I — k) - 27F
vertices altogether satisfy 7.

Q: Why do you consider positive and negative b’s separately?

3A graph is rigid if its only automorphism is the identity.
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A: Because their behavior is not independent as required for application of
Lemma 2.2.

Taking § slightly larger than %, to get 8- (I — k) > 3 - for large I, we find that
the probability that our fixed ay,...,a; constitute a counterexample to SEA(T)
decreases exponentially with [.

Now un-fix the parameters a;. Notice that the number of choices of the parameters
is bounded by a polynomial in I, namely (2] + 1). Therefore, the probability that
SEA(7) fails is small for large [. O

We remark that the proof shows that even the axioms SEA} for arbitrary a € (0, 1)
do not imply rigidity.

Q: What about hamiltonicity? From the sane conversation [10] I remember that
almost all finite graphs are hamiltonian* but hamiltonicity does not follow from
the ordinary extension axioms. Does it follow from strong extension axioms?

A: In the case of hamiltonicity, we have only a partial answer.

Proposition 4.2 For any k and any o € (0,%), there is a graph that satisfies

2
SEAY but is not hamiltonian.

Proof  We simplify a randomizing construction from [5]. Let [ be a large natural
number, and let G(I) be the graph produced as follows. The vertices are the natural
numbers from 0 to 2[; we call the first [ of these vertices friendly and the remaining
[ + 1 unfriendly. No two unfriendly vertices will be adjacent. For each potential
edge subject to this constraint, i.e., for each two vertices of which at least one is
friendly, flip a fair coin to decide whether to include that edge in G(1).

No matter what happens in the randomization, this graph cannot be hamiltonian.
Indeed, in any cycle, at most half the vertices can be unfriendly, since unfriendly
vertices are not adjacent. But in the whole graph, more than half of the vertices
are unfriendly.

To complete the proof, we show that, with high probability for large I, G(I) satisfies
SEAY. As usual, it suffices to show, for each fixed k-parameter type 7 and each
choice of values ay, .. ., a,, that the probability that fewer than - (21 +1)-27% ver-
tices b satisfy 7 (with the chosen parameters) decreases exponentially as a function
of . So let 7 and the parameters be fixed, and let b range over friendly vertices
distinct from all the parameters. So there are at least [ — k values for b, and each
satisfies 7 with probability 27, these events being independent for different b’s.
1

We apply Lemma 2.2 with 3 > 2a to this situation. Since a < 3, we can find

such a # < 1, so Lemma 2.2 is applicable. It gives us exponentially decreasing

4A graph is hamiltonian if it includes a cycle containing all its vertices.
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probability for the event that fewer than 3- (I — k) - 27% friendly vertices satisfy 7
with the chosen parameters. But since § > 2a, we have 8- (I — k) > a- (20 + 1)
once [ is large enough. Thus, we also have exponentially decreasing probability for

the event that fewer than a - (21 + 1) vertices satisfy 7 with the chosen parameters.
O

We do not know whether the preceding proposition can be extended to a > %

Its proof made crucial use of the assumption that a < % The non-hamiltonicity

of the graph depended on the presence of an independent set containing more

than half the vertices (the unfriendly ones), and no such set can exist when o > 1.

More precisely, we have the following proposition, which prevents any construction
1

like the preceding one from working when a > 5. (The specific randomizing

construction in the preceding proof doesn’t work for a = % either.)

Proposition 4.3 Let a > % There exists a number k (depending on o) such
that, for every sufficiently large n and every n-vertex graph satisfying SEAj}, no

independent set contains more than half of the vertices.

Proof  Given «, choose k so large that

1 1
1_ﬁ OZ>§,

and let n be much larger yet. Consider an n-vertex graph satisfying SEAY, and
suppose it had an independent set U of cardinality at least n/2. Fix k distinct
elements ay,...,a; € U, and consider the axioms SEA(7) applied to these k pa-
rameters, where 7 ranges over all k-parameter types except the one that says y is
adjacent to none of the parameters. Thus, we are considering 2¥ —1 types, and each
can be satisfied only by elements outside U. Thus, these types altogether have at
most n/2 elements satisfying them. But, by SEA}, each of them is realized by at
least a-m-27% vertices, so altogether they are realized by at least a-n-27%- (2% —1)
vertices. But this number exceeds n/2 by our choice of k. O

Q: I guess you told me all that you know about strong extension axioms.

A: Actually, [1] has a little bit more information. By the way, most of Shelah’s
proof (of his zero-one law for CPTime) uses ordinary extension axioms. Only one
combinatorial lemma requires strong extension axioms. But it looks like you had
enough strong extension axioms.

Q: Indeed enough, for today anyway:.
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