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EXISTENCE OF BASES IMPLIES THE AXIOM OF CHOICE
Andreas Blassl

ABSTRACT. The axiom of choice follows, in Zermelo-

Fraenkel set theory, from the assertion that every
vector space has a basis.

Halpern [2] deduced the axiom of choice from the assertion
that, in every vector space, every generating set includes a basis.
He conjectured that the axiom of choice cannot be deduced from the
weaker assertlion that every vector space has a basis, even if one
makes the additional assumption that all bases of a single vector
space have the same cardinality. The purpose of this note is to

present the following partial refutation of this conjecture.

THEOREM 1. In Zermelo-Fraenkel set theory (ZF), the axiom of

choice is deducible from the assertion that every vector space has
a basis.

The reason that this theorem only partially refutes Halpern's
conjecture is that Halpern worked with a weaker theory than ZF, 1in
which the axiom of regularity is omitted and the axiom of
extensionality is weakened to admit atoms (urelements); we shall
call this theory WZF. It is known (see [3, Chapter 9]) that the
axiom of choice is deducible in 2ZF, but not in W2F, from the axiom
of multiple choice, which asserts, for every family of nonempty
sets, the existence of a function assigning to each set in the
family a finite nonempty subset. Thus, Theorem 1 will be estab-

lished once we prove the following result.

THEOREM 2. In W2ZF, the axiom of multiple choice is deducible
from the assertion that every vector space has a basis.
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PROOF. We work in WZF with the additional assumption that
every vector space has a basis. Let {XilieI} be a family of non-
empty sets; we must find a family {FilieI} of nonempty finite
sets Fi - Xi' We assume, without loss of generality, that the
sets Xi are pairwise disjoint. Adjoin all the elements of
X = L&el Xi as indeterminates to some (arbitrary) field ¥k,
obtaining the field k(X) of rational functions of the "variables"
in X. For each 1ie¢l, we define the i-degree of a monomial to be
the sum of the exponents of members of X: in that monomial. A

rational function fek(X) is called i-homogeneous of degree 4 if

it is the quotient of two polynomials such that all monomials in
the denominator have the same i-degree n while all those in the
numerator have i-degree n+d. The rational functions that are
i-homogeneous of degree 0 for all 1ieI constitute a subfield K
of k(X). Thus, k(X)) 1is a vector space over K, and we let V
be the subspace spanned by the set X.

By assumption, the K-vector space V has a basis; we fix
such a basis B, and we use it to explicitly define the desired
finite sets Fi' For each 1¢I and each xaxi, we can express X

as a (finite)K~-linear combination of elements of B:

(1) X = peB(x) b (X) b
where B(x) 1is a finite subset of B and ab(x) is, for beB(x)},
a non-zero element of K. If vy is another element of the same

Xi as x, then we have on the one hand

Y = lpep(y) %p(¥) P
and on the other hand, after multiplying (1) by the element y/x
in K,

Y = Ipopx) (¥/%) o (x) b,

Comparing these two expressions for y and using the fact that B
is a basis, we infer that B(x) = B(y) and ab(y) = (Y/x)*ab(X)-
This means that the finite subset B(x) of B and the elements
ab(x)/x of k(X) depend only on 1, not on the particular XeX, i

we therefore call them Bi and Observe that, since

By s
bi
ab(x)eK, Bh 1s i-homogeneous of degree ~1 (and j-homogeneous
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of degree 0 for j#i), so, when By 4 1s written as a quotient of
polynomials in reduced form, some variables from X, must occur

in the denominator. Define Fi to be the set of those members of
X: that occur in the denominator of Bbi (in reduced form) for

i
required. (O

some beB.. Then Fi 1s a nonempty finite subset of Xi’ as

In view of Halpern's theorem, quoted in the introduction, it
1s natural to ask whether the axiom of choice is deducible in W2ZF
from the assertion that in every vector space every independent
set 1s included in a basis. Multiple choice is deducible (and
therefore choice is deducible in ZF) either by Theorem 2 above or
by Lemma 2 of [1], but the question as stated is, to the best of
my knowledge, open. It is also unknown to me whether results like
Theorem 2 can be obtained if the existence of bases is assumed
only for vector spaces over some specific fields, say the rationals.
Note that the results of Bleicher [l1] hold under such a restriction,
while Halpern's proof [2] and mine seem to depend érucially on
building some combinatorial complexity into the field of scalars.

I wish to thank Dr. R. Harting for asking me the question that
Theorem 1 answers and also for pointing out the wording of
Bleicher's [1] citation of Halpern's result; the wording suggested
attention to the construction of the ground field, a key step in
finding the desired proof. I also wish to thank Professor and Mrs.
G. H. Miller for their kind hospitality during my wvisit to Heidel-

berg where the result presented here was obtained.
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