BAER MEETS BAIRE:
APPLICATIONS OF CATEGORY ARGUMENTS AND
DESCRIPTIVE SET THEORY TO Z%

ANDREAS BLASS AND JOHN IRWIN

ABsTRACT. We apply the Baire category theorem and other classical results of descriptive
set theory to the study of the structure of the group Z¥0 of infinite sequences of integers and
some of its subgroups.

1. INTRODUCTION

Let II = Z®0 be the Baer-Specker group of all infinite sequences of integers, the group
operation being componentwise addition. Our purpose in this paper is to show how certain
classical results of descriptive set theory can be combined with known facts about II to
produce new information about the structure of Il and some of its subgroups. Several
of our theorems are about the possibility (or impossibility) of expressing these groups as
unions of chains of subgroups with specified properties. Others are concerned with the
possible quotients of these groups.

We begin by listing the definitions and classical results that we shall need from de-
scriptive set theory. General references for this material are the books of Kuratowski [10],
Moschovakis [14], and Kechris [9]; we shall give specific references to [14] for the results
we use.

Definition. A set in a metric space is meager (or of first (Baire) category) if it can be
covered by countably many closed sets with empty interiors. A set in a metric space has
the Baire property if it differs from some open set by a meager set.
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Baire Category Theorem (2], [14, 2H2]. In a complete metric space, no non-empty open
set is meager.

The union of countably many meager sets is meager, hence cannot cover a non-empty
open set in a complete metric space. Thus, it is reasonable to regard meager sets as very
small. A set with the Baire property is then very nearly an open set. In particular, if
such a set is not itself meager, then it contains most (i.e., all but a meager subset) of some
non-empty open set.

Definition. A Borel set is a set obtainable from open sets by repeated (possibly transfi-
nitely repeated) formation of complements and countable unions. An analytic set is the
image, under a continuous function, of a Borel set in a complete separable metric space.

The definition of “analytic” in [14] (page 43) seems more restrictive, but it follows from
[14, 1E2 and 1E5] that it is actually equivalent.

Analytic sets share much of the well-known good behavior of Borel sets. For example, in
Euclidean spaces, they are Lebesgue measurable. We shall need the following two results
of this sort.

Lusin-Sierpiniski Theorem [12], [14, 2H5|. Every analytic set in a complete separable
metric space has the Baire property.

Suslin’s Perfect Set Theorem [11], [14, 2C3]. Every uncountable analytic set in a
complete separable metric space has cardinality c.

Here and throughout this paper, ¢ denotes the cardinality of the continuum, 2%°.

Notice that this last theorem says that an analytic set can never be a counterexample to
the continuum hypothesis. The name of the theorem derives from the fact that the harder
part of its proof establishes that an uncountable analytic set has a perfect (i.e., closed,
non-empty, and without isolated points) subset; the easier part then infers the cardinality
result.

We shall apply these results to the complete separable metric space II. Its metric is
defined by

p(z,y) =2"" where n is the first number with z(n) # y(n),

whenever z # y. To verify completeness, notice that, if (z) is a Cauchy sequence in
IT then for each fixed n the sequence (xx(n)) of integers is eventually constant; call its
final value y(n) and check that zj converges to y. To verify separability, observe that the
elements of II that have only finitely many non-zero components form a countable dense
set. The topology induced by the metric p is the product topology on Z¥° obtained from
the discrete topology on Z. (Since the product of countably many complete metric spaces
always admits a complete metric, we didn’t really need to exhibit p.) A basic neighborhood
(a metric ball) about 0 is a subgroup of the form

Vi ={x €Il | z(n) =0 for all n < k},
and a basic neighborhood of any other point in II is a coset of such a subgroup Vj.

To connect these topological aspects of II with its algebraic aspects, we need a theorem
of Specker ensuring that homomorphisms are continuous.



Specker’s Theorem [16, Satz III]. Every homomorphism h : IL — Z has the form h(z) =
S g aiz(i) for some finite n and some coefficients a; € Z.

The finiteness of n in this theorem ensures that h is continuous with respect to the
product topology on II and the discrete topology (or any other topology) on Z. Since
a function into a product space is continuous if and only if all its components are, the
following corollary is immediate.

Corollary. Every homomorphism h : I — 11 is continuous.
We shall also need the following result about subgroups of II.

Baer’s Theorem [1, Thm. 4.7 and Cor. 12.8], [16, Satz I|. Every countable subgroup of
II is free.

We finish this introduction by defining and discussing two particular subgroups of 11
that will play a role in our results.

For each natural number %, let e; be the element of II whose ith component is 1 and
whose other components are all 0; these elements e; are sometimes called the standard unit
vectors. The subgroup ¥ that they generate consists of those elements of II that have only
finitely many non-zero components. It is the free abelian group on the countably many
generators e;.

The group D C Il is defined to consist of those x € II such that, for each positive integer
g, all but finitely many terms of = are divisible by ¢q. Equivalently, D/¥ is the divisible
part of II/3. Equivalently again, D is the Z-adic closure of ¥ in II. We record for future
reference that D is a Borel set in II:

D= ﬂU ﬂ {z € I1 | q divides z(n)},

g k n>k

where ¢ and k range over positive integers and the sets {z € Il | ¢ divides z(n)} are both
open and closed.

There is an analog of Specker’s theorem for D and for many other groups “near” 1I and
D. The result for D is on page 163 of [8], attributed to T. Yen. We quote here a more
general form from [3].

Continuity Theorem. Let G be a pure subgroup of index < ¢ in either Il or D, and as-
sume that ¥ C G. Then every homomorphism h : G — Z has the form h(z) = Y., a;x(i)
for some finite n and some coefficients a; € Z. Therefore, every homomorphism G — 11
18 continuous.

Here G is taken to be topologized as a subspace of II.

2. UNIONS OF CHAINS

In this section, we shall apply the results quoted in Section 1 to obtain restrictions on
possible representations of II, D and similar groups as unions of chains of subgroups.

Theorem 2.1. The group II is not the union of a countable chain of proper subgroups,
each isomorphic to 11.

Proof. Suppose we had a countable chain of subgroups Py C P, C ... of I, each isomorphic
to II, with union II. We shall show that some P, is all of II.



By the Baire Category Theorem, fix an m such that P,, is not meager. This P,,, being
isomorphic to II, is the image of a homomorphism A : IT — II. By the corollary to Specker’s
Theorem, h is continuous, so P, is analytic and therefore has the Baire property. (In fact,
because h is one-to-one, P, is a Borel set, by [14, 2E7].) Since it isn’t meager, it is
comeager in some basic open set, say a + Vi for some a € II. (Recall that a + Vj is the
coset consisting of those x € II such that z(n) = a(n) for all n < k.)

We claim that P,, O Vi. To see this, fix any z € Vi. Then the map x — = 4 z is
a homeomorphism of IT to itself, and therefore, since (a + V) \ P, is meager, so is its
translate z + ((a + Vi) \ Pp,). By the Baire Category Theorem again, these two meager
sets cannot cover a + Vi, so fix © € a+ Vi, belonging to neither of them. Then x € P, and
x — z € Py, (where we used that z — z € a + Vj, since z € V;, and Vj is a subgroup). As
P,, is a subgroup, we conclude that z € P,,, as required.

Since the chain of subgroups P; covers 1I, some P,, must contain the finitely many unit
vectors eg,...,ex_1. Then Py.xfm ) contains these unit vectors and all members of V.
But that’s enough to generate II, s0 Ppax{mny = 1. U

In the statement of Theorem 2.1, both “chain” and “each isomorphic to II” are essential.
IT is the union of countably many subgroups, each isomorphic to II, for example the
subgroup Vi = {z € I1 | £(0) = 0} and the subgroups {x € II | (1) = rz(0)} for all
rational numbers r. Also, IT is the union of a countable chain of proper subgroups (not
isomorphic to II). One way to see this is to represent II/3 as the direct sum of its divisible
part D/Y. and a reduced part R; as a rational vector space, D /Y. can easily be expressed
as a countable increasing union of proper, pure subgroups, and, taking direct sums with
R and then pre-images in II, we get a similar representation for II.

We do not know whether “countable” is essential in Theorem 2.1. It might be provable
that II is not the union of a chain (of any length) of proper subgroups isomorphic to II.
On the other hand, it may be that the continuum hypothesis implies that II is expressible
as such a union, for a chain of length ¥;.

The proof of Theorem 2.1 actually establishes considerably more than the theorem
asserts. In the first place, the assumption that the subgroups in the chain are isomorphic
to II was used only to show that they are analytic. Thus, the following corollary is already
proved.

Corollary 2.2. The group 11 is not the union of a countable chain of analytic, proper
subgroups.

If G is an analytic subgroup of index < ¢ in Il or in D and if ¥ C G, then, by the
Continuity Theorem, every homomorphic image of G in II is also analytic. Thus, II cannot
be covered by a countable chain of such homomorphic images. In particular, IT cannot be
covered by a countable chain of subgroups isomorphic to D. We digress for a moment to
improve this last special case with a totally different method.

Proposition 2.3. The group II is not the sum (hence a fortiori not the union) of fewer
than ¢ subgroups, each isomorphic to D.

Proof. Suppose it were such a sum. Each of the summands has a countable subgroup for
which the quotient is divisible (because D has such a subgroup, namely ). Let H be the
sum of those fewer than ¢ countable subgroups. Thus, |H| < ¢ and II/H is divisible. This
leads to a contradiction by the following argument, essentially the proof of Theorem 2 in
[6]. Since II/H is divisible, we have II = H + 2II. Therefore 11/2I1 = (H + 2II)/2I1 =



H/(H n 2II). Here the group on the left has cardinality ¢ while the group on the right, a
quotient of H, has smaller cardinality. This contradiction completes the proof. [

Returning to Theorem 2.1, we need a definition in order to state our next improvement
of it. For ease of reference, we combine this definition with another that we shall need
later.

Definition. The cardinal cov(B) is the smallest k£ such that some x meager sets cover
the real line. The cardinal add(B) is the smallest x such that some x meager sets of reals
have a non-meager union.

Clearly, X; < add(B) < cov(B) < ¢. It is known that each of these three inequalities
is strict in some but not all models of set theory [7]. It is also known that cov(B) and
add(B) are unchanged if we replace the real line in their definition by II. Indeed, II is
homeomorphic to a comeager subset of R, namely the set of irrational numbers; see [9,
Thm. 7.7].

The only use, in the proof of Theorem 2.1, of the countability hypothesis was to ensure
that the subgroups P, cannot all be meager. For this purpose, that hypothesis can obvi-
ously be weakened to say only that the number of P,’s is smaller than cov(B). (Whether
this is a genuine weakening, i.e., whether cov(B) > Y;, depends, as mentioned above, on
what set-theoretic universe one is in.)

Finally, the hypothesis that the P, form a chain can be weakened to say only that they
form a directed family, i.e., that every two of them (and therefore every finitely many of
them) are contained in a single one. This weakening would have made no difference if
we were still requiring countability, since every countable directed set contains a cofinal
chain, but, now that we have weakened the countability assumption, this additional weak-

ening makes sense. The following corollary summarizes all the preceding improvements of
Theorem 2.1.

Corollary 2.4. The group II is not the union of a directed family of fewer than cov(B)
proper, analytic subgroups.

We turn next to analogous results for D in place of II. The proof of Theorem 2.1 cannot
be applied to D because D, unlike II, is not a complete metric space. Not only is D not
complete with respect to the metric of II (because it’s not closed in II), it is not complete
with respect to any metric inducing the same topology (because it’s not a G5 set in IT; see
[9 Thm. 3.11]).

In fact, D is the union of a countable chain of proper subgroups, each isomorphic to D;
consider for example, the subgroups

Dy ={z € D | z(n) is even for all n > k}.
Nevertheless, we can get an analog of Theorem 2.1 by adding the hypothesis that the

subgroups in the chain are pure.

Theorem 2.5. The group D is not the union of a countable chain of pure subgroups, each
1somorphic to D.

Before starting the proof, we give a definition that will be used both in this proof and
in some later results.



Definition. For any f € II, let

fll ={z €Il | f(n) divides z(n) for all n}.

Clearly, fII is a Borel (in fact, closed) subgroup of II. Notice that, if no component of
f 18 0, then componentwise multiplication by f is an isomorphism from II onto fII. We
shall write f - — for this isomorphism and —/f for its inverse. Notice also that, if f € D
then fII C D.

Proof of Theorem 2.5. Suppose D were the union of a countable chain of pure subgroups
Dy C D, C .... Temporarily fix some f € D with no zero components, and use the
isomorphism f - — mentioned above to pull back the subgroups D, N fII to subgroups
P, = (D, N fII)/f of Il. These P, form a countable chain with union II.

Recall that D is a Borel set in 1I. Each D,,, being isomorphic to D, is then an analytic
set, because of the continuity theorem. Since fII is Borel, it follows that D,, N fII and P,
are analytic; see [14, Thm. 1E2].

By Corollary 2.2, we deduce that the P,, cannot all be proper subgroups of II. So there
is n with P, = II, which means that D, N fII = fII and thus fII C D,,.

Un-fix f. We have seen that, for every f € D with no zero components, there is an
n such that fII C D,. (Of course, n can depend on f; otherwise, we could immediately
conclude that D C D,, and the proof would be finished.)

Since each D, is a proper subgroup of D, fix some g, € D\ D,. For each natural
number z, define h,(2z) to be an integer so large that, for all k¥ > h,(z), g, (k) is divisible
by z!; such an integer exists because g, € D. There is an increasing function A, from
natural numbers to natural numbers, that eventually majorizes each h,,. For example, we
can define h(z) to be z plus the maximum of ho(2), h1(z), - .., h,—1(2), so that h majorizes
hy, beyond n. It will be convenient to have h(0) = 0.

Now define f € II by letting f(k) = 2! for the largest z such that h(z) < k. Such a
largest z exists, because h is increasing and h(0) = 0.

Notice that, for any fixed positive integer g, all sufficiently large k satisfy h(q) < k,
which means that the z in the definition of f(k) is > ¢ and therefore ¢ divides f(k). This
proves that f € D. Since no component of f is 0, the first part of this proof provides an
n such that fII C P,. Fix this n for the rest of the proof.

Our choice of h ensures that h(z) > hy,(2) for all sufficiently large z. By taking k large
enough, we can ensure that f(k) = 2! for a sufficiently large z, where k£ > h(z) > h,(2).
Then, by definition of h,,, we know that g, (k) is divisible by z! = f(k).

We thus have f(k) dividing g¢,(k) for all sufficiently large k. It follows that, for a
suitable positive integer ¢, f(k) divides cg, (k) for all k& (not just all sufficiently large k).
For example, we could take ¢ to be the product of those finitely many f(k) that do not
divide the corresponding g, (k). Thus, we have cg, € fII. By our choice of n, we have
cgn € D,,. Using the assumption that D, is pure, we infer that g,, € D,,, which contradicts
the definition of g,,. [

Theorem 2.5 admits improvements similar (but not quite identical) to those of Theo-
rem 2.1. As before, we can replace the assumption that the subgroups are isomorphic to D
by the assumption that they are analytic, and we can weaken “chain” to “directed family.”

But a difference arises when we try to weaken the countability hypothesis, since this
hypothesis was used twice in the proof of Theorem 2.5. The first use occurred when we



invoked Corollary 2.2, and we have already seen that “countable” can be replaced with
“< cov(B)” there. The second use occurred when we defined the function A to eventually
majorize all the (countably many) h,. Can uncountably many functions be similarly
eventually majorized by a single one? The answer depends on one’s set-theoretic universe.
More precisely, define b to be the smallest cardinality of any family of functions N — N
not eventually majorized by a single function. Clearly, 8; < b < ¢; any combination of
equalities and strict inequalities here is consistent with the usual axioms of set theory. The
second use of countability in the proof of Theorem 2.5 still works as long as the number
of h,,’s is smaller than b.

Thus, for the proof of Theorem 2.5 to apply to an uncountable directed family of
D,,’s, we need the cardinality of this family to be smaller than both cov(B) and b. This
requirement can be simplified by using the known fact [7, 13] that the smaller of cov(B)
and b is exactly add(B).

Corollary 2.6. The group D is not the union of a directed family of fewer than add(B)
pure, proper, analytic subgroups.

We close this section with some results about isomorphic copies of Il inside D. We con-
sidered a family of such copies, namely those of the form fII, in the proof of Theorem 2.5.
It turns out that every copy of II in D is included in one of this special form.

Theorem 2.7. If h: 11 — D is any homomorphism, then there is an f € D (with no zero
components) such that h(IT) C fII.

Proof. Temporarily fix a positive integer q. The group D is covered by the countable chain
of Borel subgroups

Dy, = {z € D | q divides z(n) for all n > k}.

Since h is continuous, the groups h=!(Dy) are Borel sets in II. By Corollary 2.2, there
must be a k such that h=!(Dy) = II, which means h(II) C Dj.

Now un-fix q. Of course, the k£ we found in the preceding discussion may depend on g¢,
so we call it k(g). It has the property that, for all z € IT and all n > k(q), we have h(z)(n)
divisible by q. We may assume that k(1) = 0.

Define f by letting f(m) = ¢! for the largest ¢ < m such that k(q!) < m. Then f € D
since f(m) is divisible by ¢! for all m > max{q, k(¢!)}. Finally, we check that A(IT) C fII.
Consider any z € II and any m; we must show that f(m) divides h(z)(m). But f(m) = ¢!
for a certain ¢ satisfying k(q!) < m, which means, by definition of k(q!), that h(z)(m) is
divisible by ¢!, as required. [

In the following corollaries, we deal with isomorphic copies of II although Theorem 2.7
would allow us to deal with homomorphic images of Il just as easily. The extra generality
is illusory, since Nunke [15, Thm. 5] showed that all homomorphic images of II that are
subgroups of Il are isomorphic to either 1l or Z™ for some finite n.

Corollary 2.8. No isomorphic copy of Il in D includes X.

Proof. If an isomorphic copy G of II in D included ¥, then Theorem 2.7 would give an
f € D such that ¥ C G C fII. But the only functions f for which ¥ C fII are those that
take only the values +1, and these are not in D. [



Corollary 2.9. The group D is not the union of countably many isomorphic copies of 11.

Proof. If D were such a union, then by Theorem 2.7 we could assume that the countably
many isomorphic copies of II involved in the union are of the form f,II for certain f,, € D
with no zero components. As in the proof of Theorem 2.5, we can find a single f € D
such that, for each n, all sufficiently large k£ have f(k) dividing f,,(k)/2. In particular, for
each n there exists some k (in fact any sufficiently large k will do) such that f,(k) does
not divide f(k). But then f is not in any of the f,II, contrary to assumption. [

Corollary 2.10. The group D is not the union of a chain (of any length) of isomorphic
copies of 11.

Proof. Suppose it were such a union. For each of the countably many members s of ¥, fix
a group in the chain that contains s. The union of the countably many chosen groups is
either all of D (if these groups are cofinal in the chain) or included in a larger subgroup
from the chain. The first possibility contradicts Corollary 2.9, and the second contradicts
Corollary 2.8. O

3. QUOTIENTS OF D

In this section, we prove two theorems saying that, under certain circumstances, a
small quotient of D is necessarily free of finite rank. The “certain circumstances” are that
the quotient is separable or that the kernel is analytic; the necessary “smallness” of the
quotient depends on which of these two circumstances is assumed.

Recall that a group G is called separable if it can be embedded as a pure subgroup in
Z" for some cardinal k.

Theorem 3.1. FEvery separable quotient of D of cardinality < ¢ is free of finite rank.

Proof. Let G be such a quotient, with epimorphism A : D — G. Let B be the purification
in G of h(X). Since D/¥ is divisible, so is G/B; furthermore, B is pure in G and, as a
countable subgroup of some Z*, B is free. Therefore, the hypotheses of Theorem 1 of [5]
are satisfied, and we conclude that G may be identified with a pure subgroup of II (rather
than some larger Z").

Making this identification and applying the continuity theorem to h, we conclude that
G is analytic. By Suslin’s Perfect Set Theorem, the assumption that |G| < ¢ implies
that G is countable. By Baer’s Theorem, G is free and is therefore a direct summand
of D. But it follows immediately from the continuity theorem that D has no free direct
summands of infinite rank. (The continuity theorem says that D has only countably many
homomorphisms to Z, but such a summand would have at least ¢ such homomorphisms.)
Therefore, G has finite rank. [

Theorem 3.2. Suppose E is a pure, analytic subgroup of D of countable index. Then
D/E is free of finite rank.

Proof. Temporarily fix some f € D with no zero components. Recall that we have fII C D
with fII isomorphic to IT via —/f and f - —. By hypothesis, E is analytic, and so are all
its cosets y + F because addition is continuous. Since f - — is clearly continuous, the
inverse images in II of these cosets, namely ((y + E) N fII)/f, are also analytic. They
can’t all be meager, as there are only countably many of them and they cover II. By the
Lusin-Sierpiriski Theorem, one of them almost (i.e., except for a meager set) covers a basic



neighborhood x + V;. By a Baire category and subtraction argument, as in the proof of
Theorem 2.1, it follows that (E N fII)/f includes V. This means that Vi, N fII C E.

Consider now some z € Vi such that f(n) divides z(n) for all but finitely many n. We
say that such a z is almost in fII. Then multiplying z by a suitable positive integer (for
example the product of all the finitely many f(n) that don’t divide the corresponding z(n))
we obtain an element in Vi N fII, hence in E. But E is a pure subgroup of D, so z € F.

Now un-fix f. We have shown that, for every f € D with no zero components, there
exists k such that F contains all elements of Vj, that are almost in fII. Let k(f) be the
smallest such k.

We claim that, as f varies, k(f) remains bounded. To prove this claim, suppose it were
false, and fix a sequence of f’s, say fi,, such that the corresponding k( f,,) increase without
bound. As in the proof of Theorem 2.5, obtain a single f € D (with no zero components)
such that, for each m, all sufficiently large n have f(n) dividing f,,(n). It follows that
everything that is almost in f,,II is also almost in fII. Therefore, k(f,,) < k(f) for all m.
This contradicts the choice of the f,,, so the claim is established.

By virtue of the claim just verified, we fix a single k& so large that F contains all elements
of Vi N fI1, for all f € D without zero components. In other words, £ O DNV}. Therefore,
D/E is a quotient of D/(D N Vy) =2 ZF. As E is pure in D, D/E is torsion-free. But the
only torsion-free quotients of ZF are free abelian groups of finite rank, as required. [

In Theorem 3.2, the hypothesis that the index of F is countable was used only to apply
the Baire category theorem to see that the countably many sets ((y + E) N fII)/f cannot
all be meager. So it suffices to assume that the index of E in D is < cov(B). The following
corollary summarizes this improvement of Theorem 3.2 along with Theorem 3.1 and some
known results.

Corollary 3.3. For any subgroup E of D, the following are equivalent.

(1) D/E is a free abelian group of finite rank.

(2) E is a pure subgroup of D of countable index and E = D.
(3) E is a pure, analytic subgroup of D of index < cov(B).
(4) E is a subgroup of D of index < ¢ and D/E is separable.

Proof. Theorem 3.1 says that (4) implies (1), and that (1) implies (4) is obvious. The-
orem 3.2 and the discussion following its proof give that (3) implies (1). The only non-
obvious part of the implication from (1) to (2) is that E = D, but this follows since the
freeness of the quotient implies that E is a summand of D and it is shown in [4] that all
infinite rank direct summands of D are isomorphic to D.

Finally, for the implication from (2) to (3), it suffices to recall that D is a Borel set and
so, by the Continuity Theorem, every isomorphic copy of D in II is analytic. [J
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