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This is the first in a series of papers extending the Abstract State Machine Thesis — that arbitrary
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with their environments during a step rather than only between steps. In the present paper, we
describe, by means of suitable postulates, those interactive algorithms that
(1) proceed in discrete, global steps,
(2) perform only a bounded amount of work in each step,
(3) use only such information from the environment as can be regarded as answers to queries, and
(4) never complete a step until all queries from that step have been answered.

We indicate how a great many sorts of interaction meet these requirements. We also discuss
in detail the structure of queries and replies and the appropriate definition of equivalence of
algorithms.

Finally, motivated by our considerations concerning queries, we discuss a generalization of
first-order logic in which the arguments of function and relation symbols are not merely tuples of
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1. INTRODUCTION

Small-step algorithms are characterized by two properties:

—(Step) The computation proceeds in a sequence of discrete steps.

—(Small) The amount of work done by the algorithm in any one step is bounded;
the bound depends only on the algorithm, not on the state, nor on the input, nor
on the actions of the environment.
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Many authors call such algorithms sequential (for example the present authors in
[Blass and Gurevich 2003b; Gurevich 2000]), but other authors use “sequential” to
mean only the first of these properties (which we call sequential time). Because of
this ambiguity, we now prefer the term “small-step”.

These concepts may be clarified by some non-examples. Parallel algorithms of
the sort analyzed in [Blass and Gurevich 2003b] are sequential time algorithms,
because the computation proceeds in discrete, global steps, but they are not in
general small-step algorithms. When there is no uniform bound on the number of
processes operating in parallel, the amount of work done by the algorithm in one
step can be unbounded.

Distributed algorithms are, in general, not even sequential time algorithms. Here
many agents can proceed asynchronously, each at its own speed, and communica-
tions between them may provide the only logical ordering of their activities. Such
a computation cannot in general be viewed as a sequence of global steps.

The notion of small-step algorithm is given a precise definition in [Gurevich 2000],
and the main theorem of [Gurevich 2000] is that every such algorithm is equivalent
(in a strong sense) to a small-step abstract state machine (ASM). In particular,
the small-step ASM step-for-step simulates the given algorithm. The definition in
[Gurevich 2000] allowed for a limited interaction between the algorithm and its
environment. Specifically, a run of the algorithm is a sequence of states in which
each (except the last, if there is a last one) is transformed to the next either by the
transition function of the algorithm or by an intervention of the environment.

In this paper, we consider small-step algorithms that interact more strongly with
their environments. We allow the environment to intervene during a step of the
algorithm, not just between steps. Indeed, our primary interest here is in interac-
tions during steps. Interactions between steps can be treated as in [Gurevich 2000],
by allowing a run of the algorithm to contain not only steps in which the algo-
rithm changes the state but also steps where the environment changes the state.
Interactions during steps involve more complex issues, which our treatment here is
intended to elucidate.

We shall see that there is no loss of generality in taking the interaction to consist
of queries from the algorithm and answers from the environment.

It is possible to design algorithms that can complete a step without necessarily
having received answers to all the queries issued during the step. It is also possible
to design algorithms that make use of the order in which answers are received from
the environment. It appears, however, that practical algorithms usually do not
behave in such ways. (Real-time algorithms may appear to be a counterexample,
but they can be treated by regarding the arrival time of a reply as part of the reply.)
Accordingly, we study in this paper those algorithms, the ordinary ones, that

—never complete a step until all queries from that step have been answered and

—use no information from the environment beyond the function assigning answers
to queries.

Here we count a time-out signal as an answer. A more explicit formulation of the
second aspect of ordinariness is that whatever the algorithm does is completely
determined by its program, its current state, and the answers the environment has
already provided for earlier queries.
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The general case of sequential-time algorithms that are not (necessarily) ordinary
will be treated in [Blass, Gurevich, and Rossman ].

The present paper begins our study of ordinary, interactive, small-step algo-
rithms. The central contribution is a system of postulates intended to define pre-
cisely what these algorithms are. They play the same role as the postulates defining
small-step algorithms (previously called sequential) in [Gurevich 2000] and those
defining wide-step algorithms (previously called parallel) in [Blass and Gurevich
2003b]. We extensively discuss the reasons for our postulates, and we consider
some potential variations. We also extensively discuss the concept of equivalence of
algorithms, since it involves some subtleties that did not occur in non-interactive
situations. Because of the length of these discussions, we postpone to the next
paper in this series the connection between algorithms and ASMs. The main result
to be proved there is that every algorithm, in the sense defined by the postulates,
is equivalent in a strong sense to an appropriate ASM.

Already in the present paper, ASMs play a role, by way of the ASM-based pro-
gramming and specification language AsmL [AsmL ]. Though not limited to small-
step algorithms, AsmL provides a prime example of the issues involved in this paper
— steps that can include both interaction and parallelism. Indeed, so far as we
know, no other imperative language allows both of these simultaneously, with both
extensive interaction and parallelism within a single step.

In comparison with the postulates for algorithms in [Gurevich 2000], the pos-
tulates in the present paper not only allow for interaction with the environment
within a step but also make two changes that could — and we believe should —
be applied even in the situation of [Gurevich 2000]. First, we allow the possibility
that an algorithm fails to produce a transition from a certain state (with certain
answers from the environment, even if all its queries have been answered). Second,
we take into account trivial updates, those that don’t change the state but merely
reassert a pre-existing value of some function. These are important in distributed
algorithms and are technically useful in the present, small-step situation as well.
For details about these changes, see Section 5, and for a general discussion, see
[Blass and Gurevich 2003c, Section 7].

Related work. Several authors have proposed definitions of what an algorithm is.
The one most relevant to our purposes is the definition of sequential algorithms
in [Gurevich 2000]. Another recent proposal was made by Moschovakis in [2001].
Turing’s ground-breaking paper [Turing 1936] also sought to describe algorithms,
although the resulting Turing machines no longer look like general algorithms. As
far as we know, none of the previous definitions of algorithms dealt with intra-step
interaction. For example, [Gurevich 2000] dealt only with interactions where the
environment acts between steps to modify the state. No environmental interactions
were considered in [Moschovakis 2001]. The generalization of Turing machines to
allow oracles amounts to allowing a sort of interaction with an environment, but
again not combined with other activity within a single step.

Interaction has also been studied for its own sake, for example in process calculi
such as the π-calculus [Milner 1999]. But here too, the interaction cannot be
described as intra-step; in fact, the interactions are the steps, insofar as there are
steps at all. Similarly, the work of Wegner and Goldin (see [Wegner and Goldin
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1999] and the references there), emphasizes interaction but does not involve steps
within which repeated interactions can occur.

As indicated above, this paper is to be followed by one establishing that al-
gorithms, in the sense defined here, are behaviorally equivalent to abstract state
machines. This idea — the ASM thesis — was first established for small-step algo-
rithms in [Gurevich 2000] and subsequently for wide-step algorithms in [Blass and
Gurevich 2003b], but in both cases the algorithms under consideration were not
interactive.

2. EXAMPLES AND DISCUSSION

We use the word “environment” with a very broad meaning. It covers everything
that is relevant to the algorithm’s work except for what is internal to the algorithm
(and completely specified by the algorithm’s program). For example, in a modern
computer, a typical algorithm’s environment will include as much of the operating
system as might affect the algorithm’s operation. In a distributed system, we can
consider any one agent as an algorithm and all the other agents as (part of) its
environment.

It will be useful to record some typical examples of how an algorithm can interact
with its environment, during a step. Ultimately, we shall want a fairly uniform
description of these interactions, but first we should look at the diverse possibilities,
to see what needs to be uniformized.

Example 2.1. The algorithm needs a character string to be provided by the user.
Prompted by (an implementation of) the algorithm, the user types in a string.

We can pretend that the string has been prepared ahead of time and placed
into an input file, before this step of the algorithm, and that the algorithm just
reads the string from the file. In this way, we can pretend that the environment
— in this case the user — acted between the algorithm’s steps. But this is only
a pretense; in reality the interaction occurs during the algorithm’s step. And the
pretense becomes more difficult to maintain if the algorithm could issue any of
several prompts, requiring different sorts of responses, or if the algorithm interacts
with several users who may respond at different times.

Example 2.2. An agent in a distributed computation receives, during one of its
steps, a message from another agent. In principle, such a message is similar to the
user input in the preceding example, except that no prompt was issued.

Example 2.3. During a step, the algorithm prints a string and continues, possibly
with additional computation and interaction, to complete the step.

We can pretend that the string is stored somewhere in the algorithm’s state
and that it is discreetly removed and printed by the environment after the step
is complete. That is, we can pretend that the interaction occurred between steps.
But, as above, the reality is that the interaction occurs during a step.

Example 2.4. An agent in a distributed computation sends a message to another
agent. In principle, this is quite analogous to the printing example above.

Example 2.5. Non-deterministic choices are, as discussed in [Gurevich 2000, Sec-
tion 9], decisions of the environment. Algorithms are, by nature, deterministic.
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What is sometimes called a non-deterministic algorithm is really an algorithm that
sometimes asks the environment to make a non-deterministic choice for it. That
request and the environment’s response can happen within a single step of the
algorithm.

Example 2.6. An algorithm may need to enlarge its state. For example, a graph
algorithm may need to add a new vertex to the graph it is working on. Or a Turing
machine with a finite tape may have reached the end of its tape and want to attach
a new cell in order to continue its computation. We adopt from [Gurevich 1995] the
convention that a state of an algorithm contains, in addition to its active part, an
infinite supply of reserve elements, available to be imported as “new” elements of
the active part of the state when needed. This importing, or at least the choosing
of the element to be imported, though requested by the algorithm, is actually done
by the environment, since it can be non-deterministic (indeed it is in [Gurevich
1995]).

Example 2.7. Abstract state machines can have so-called external functions [Gure-
vich 1995]. These are similar to any other basic functions in the ASM’s state except
that their values are not controlled by the algorithm but rather by the environment.
It was assumed in [Gurevich 1995] that the values of an external function cannot
change during a single step of the algorithm, but this assumption was subsequently
found to be undesirably restrictive and was therefore removed; in particular it does
not apply to AsmL.

For example, an important use of external functions is in modeling distributed
systems. A value that is written by one agent and read by another is represented
as an external function value of the reading agent. Since agents operate asyn-
chronously, the values of these external functions can change in the middle of the
reading agent’s step. In such a situation, if an ASM’s program refers several times
to the same external function with the same argument tuple within a single step,
the values may nevertheless be different. Indeed, if the writing agent works faster
than the reading agent, then the latter may see an external function value change
several times during one of its steps.

It is possible to model the picture with varying external functions within the
framework of [Gurevich 1995]. This involves replacing different occurrences of the
same external function symbol by different symbols, for example by attaching sub-
scripts to the function symbols.

With these examples in mind, we now discuss, in general terms, our view of
algorithms, environments, and their interaction. These generalities will be replaced,
in Section 5, by specific postulates, which will play the central role in this paper
and its sequel. Nevertheless, the preliminary generalities are important for they
provide the intuitive basis for the postulates.

What we say here about algorithms, steps, and states is largely a recapitulation
of what was already said in [Gurevich 1995]. The new material here concerns the
interaction with the environment and the two changes mentioned toward the end
of the introduction, failures of transitions and trivial updates.

An algorithm is given by a finite text. It provides complete instructions for
carrying out a computation.
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As already indicated, we are concerned with algorithms that proceed in a discrete
sequence of steps (sequential time algorithms). Initially, and again at the end of
each step that doesn’t fail, the algorithm is in some state, which incorporates all the
currently available information that will be relevant to the future progress of the
algorithm. Note that this meaning of the word “state” is more comprehensive than
some other common meanings of the same word. For example, if the algorithm is
a Turing machine, then the state in our sense includes not only the state of the
finite control but also what is written on the tape and which cell is scanned; that
is, it includes what is often called the instantaneous configuration or instantaneous
description. Similarly, for a C program, the state in our sense includes not only the
values of variables but also the content of the stack and the position of the program
counter.

The state changes only at the end of a step. During a step, the algorithm can do
scratch work, but unless this work is recorded in the state at the end of the step it
will not be available in subsequent steps.

We are concerned with the changes that the algorithm makes to its state in any
step. The environment can also intervene, between steps, to change the state, but
such changes are outside the scope of our discussion. The role the environment
plays in our discussion is to provide information during a step of the algorithm,
thereby affecting the state at the end of that step. Thus, we study interactions be-
tween the algorithm and its environment taking place entirely within single steps.
As mentioned earlier, interactions that take place between the algorithm’s steps can
be treated as in [Gurevich 1995] and [Gurevich 2000], so we do not need to recon-
sider them here. If an interaction appears to span several steps, then it should be
regarded as separate interactions within single steps, with appropriate information
being recorded in the state so that the algorithm remembers the earlier interaction
when the later one occurs. For example, if the algorithm prompts the user for an
input during one step and receives the input during a later step, then the prompt
should be treated as an outgoing message, the user’s input should be regarded as
an incoming message, and the state should, between these two steps, record that
a prompt was issued and how the resulting input should be used. In this way, we
maintain the principle that the state must contain all the information from the
preceding step that is used at any later step.

Everything done by an algorithm during a step is determined, via its program,
from the state at the beginning of the step plus information received from the
environment during the step.

It is convenient to assume that the interaction between the algorithm and its
environment takes the form of queries from the algorithm and replies from the
environment. At first sight, this assumption seems to exclude Example 2.2, where
the environment supplies information without being asked, and Examples 2.3 and
2.4, where the algorithm exports information without expecting a reply. These and
similar examples can, however, be brought into the query-reply form rather easily
as follows.

Consider first a situation where the environment supplies information without
being asked for it. Such information cannot have any effect until the algorithm pays
attention to it. We regard the algorithm’s act of paying attention as an implicit
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query, and we regard the unsolicited information as a reply to that query. (As
indicated above, these considerations are intended for environment actions within
a step. If the environment provides information between steps, then it should be
viewed as changing the algorithm’s state to incorporate this information.)

This view applies in particular if the algorithm is written in the object-oriented
style and the incoming information is a method call to one of the objects. The call
is regarded as the answer to an implicit query of the form “I’m looking for a method
call”. It may seem that this lowers our abstraction level, but it doesn’t. We don’t
care in detail how the algorithm inquires about incoming calls. Any implementation
of the algorithm will do it in some particular way. But there will always be a query.

Now consider the situation where the algorithm emits information without ex-
pecting a reply, for example by sending a message or by printing a string. We can
regard such outputs from the algorithm as queries of a degenerate sort, to which the
response is a vacuous and automatic “OK”. (We could also regard them as queries
to which no reply is expected, but that approach would require exceptions in the
clause of the definition of “ordinary” algorithms requiring that they complete a step
only when all queries have been answered. The “OK” convention means that these
queries are automatically answered, so they have no effect on whether a step can
be completed. The choice between the two conventions is a matter of convenience.)

With these understandings, we can safely regard every interaction between an
algorithm and its environment as being initiated by the algorithm with a query, to
which the environment supplies a reply. In accordance with our earlier discussion,
the reply will arrive during the same step in which the query was issued. (If it
arrived later, we’d have two interactions, one in each of the relevant steps, not a
single query and reply. The query would be considered an output, i.e., a query that
gets an automatic reply “OK” during the same step. The reply at the later step
would be considered an unsolicited input, i.e., a reply to a query (in that same later
step) that consists of just paying attention to this input.) It is entirely possible for
several such query-reply pairs to occur during a single step, and the later queries
may depend on the earlier replies. However, for a small-step algorithm, the number
of queries issued in any step must be bounded by a number that depends only on
the algorithm, not on the state or on the replies to queries. After all, issuing a
query is work, and the total work done during one step is bounded.

A query gets at most one reply. If it appears that several replies are given and
are used by the algorithm, then, much as in our discussion of unsolicited input,
we regard the algorithm’s paying attention to subsequent answers as constituting
additional, implicit queries.

It is imaginable that a query gets no reply. For example, the algorithm may
request a non-deterministic choice of an element from some set, and the set may be
empty. In such a case, the environment may simply fail to respond, though it would
be more reasonable to expect a reply in the form of an error message, perhaps of
the form “cannot choose from empty set”. For another example, the algorithm may
prompt the user for some input and the user may fail to respond.

In this paper, we consider only ordinary algorithms, which means in particular
that our algorithms never complete a step until all queries issued during that step
have been answered. If the environment refuses to answer then the algorithm simply
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hangs; the step is never finished and there is no next state. A great many practical
algorithms are of this sort.

For example, the algorithm may incorporate a “timeout” mechanism whereby, if
no answer is received within a certain time, then this fact is itself regarded as a
reply, so that the algorithm can proceed (perhaps by retrying the query, perhaps by
just making a step with no change to its state, perhaps by doing something more
intelligent, or perhaps by doing something disastrous). Notice that the timeout
information, i.e., the information that so and so much time has elapsed since the
query, is itself provided by the environment, though probably by a different part
of the environment than the part that should be answering the query. This is in
keeping with the principle that what the algorithm does during a step depends only
on its program, its state, and information supplied by the environment. A clock
that keeps time independently of the progress of the algorithm’s execution is not
part of the program and not part of the state, so it must be part of the environment.

3. MOTIVATION

In this section, we address two questions of motivation. First, why study intra-
step interaction with the environment? Second, why restrict attention to ordinary
algorithms? Readers who are already convinced of the value of studying ordinary
intra-step interaction can skip this section without loss of continuity.

3.1 Intra-step

It is natural to ask whether intra-step interaction is needed at all. Can’t we just
consider every interaction with the environment as ending the current step and
starting a new one? By subdividing the sequence of steps sufficiently finely, can’t
we reduce all interaction to the inter-step case?

There are several reasons for not wanting to subdivide steps so finely. First, the
subdivision would make some aspects of the situation unpleasantly complicated.
For example, the evaluation of a single expression (say as part of an assignment
command) could span several steps if the expression involved nested occurrences of a
function that is evaluated by calling an external library (or another agent’s method).
Modeling and reasoning about computations is facilitated by using reasonably large
steps rather than subdividing them very finely.

Second, this subdivision would be incompatible with any parallelism within a
step. Thus, for example, one could not evaluate unnested occurrences of a library
function in parallel. The reason is that any query to the environment by one of
the subprocesses would end the current step, and it is unclear what should then
happen to the other parallel subprocesses’ computations. Although the restriction
(in the present series of papers) to small-step algorithms means that there will not
be massive parallelism within a step, a bounded amount of parallelism, such as
evaluating several subexpressions in parallel, is permitted and very desirable for
modeling and specification (see [AsmL ]).

In practice, an algorithm often interacts with its environment in two ways. There
is a local environment, often on the same computer or on closely connected ma-
chines, and there is a global environment, often out on the internet. Within the local
environment, the algorithm has conversations, like method calls and call-backs, that
are best viewed as just fulfilling a single request. But while this is going on, the
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algorithm should maintain a fixed state as far as its long-distance interactions are
concerned. It is useful to model this situation by beginning a new step only when
the state, as seen by the global environment, changes. Then the conversations with
the local environment are mostly intra-step interactions.

This issue is connected with the notion of transactions in database theory. The
idea here is that many updates are collected and performed all at once. A familiar
example is the transfer of money from one bank account to another. The subtraction
from the first account and the addition to the second must occur together. If one
fails for any reason, then the other should not be executed either. So the state must
persist until all the updates are ready, which is likely to be longer than merely from
one interaction to the next.

In the example just mentioned, a crucial property of the transaction is that it can
be rolled back. If anything goes wrong during the transaction, the state remains
as it was initially, not as the already computed updates would have it. Notice,
though, that not everything can be rolled back in this sense. The state of the
database reverts to the beginning of the step, but any prompts and other messages
issued to the user cannot be un-issued. Of course, the user can (and should) be
informed that the transaction failed, but nothing can alter the fact that he has seen
the previously issued messages. The situation is similar in the computation model
we describe in this paper. If a step fails, the state remains unchanged, but any
queries already issued cannot be retracted.

Example 3.1. To give an idea of the aspects of computation modeling that make
intra-step interaction desirable we describe a small example reflecting real-world
AsmL experience.

Consider the task of painting, i.e., assigning colors to, the parts of some picture.
Suppose an algorithm wants to paint two pictures, with these jobs being done
in parallel. The actual painting is done by another agent (the operating system)
in response to a method call from our algorithm. But the picture isn’t directly
available to our algorithm so it can’t send complete instructions for the painting
when it issues the method call. Instead, the painting agent, to whom the picture
is available, produces callbacks to our algorithm, saying “such and such is in the
picture; what color should it be?”, and by replying to these, our algorithm gradually
specifies how the picture is to be painted. After each reply, the painting agent paints
the item in question with the specified color. The entire process of painting a picture
should be viewed as a single transaction; if any part of the conversation fails, then
all colors should revert to what they were before the conversation began.

When our algorithm issues two parallel calls, to paint two pictures, the resulting
conversations should not interrupt each other, for example by ending the step. The
best way to model the process is as a single step, with interaction during the step.

In order for this to be a small-step algorithm, it is, of course, necessary that the
amount of interaction in a step be bounded. Thus, we must require that only a
bounded number of callbacks occur during any one step. (If the number of callbacks
were unbounded, the algorithm would still make sense, but it would not be a small-
step algorithm.)

Another use of intra-step interaction is to model non-determinism. As mentioned
in Example 2.5, what is sometimes called a non-deterministic action by an algorithm

ACM Transactions on Computational Logic, Vol. V, No. N, June 2004.



10 · A. Blass and Y. Gurevich

is really a choice made for the algorithm by the environment. The interaction
involved here, namely the algorithm’s request for a choice and the environment’s
reply, is most naturally viewed as occurring within a step of the algorithm. This
applies in particular to the creation (or importation from the reserve) of new objects;
see Example 2.6.

Finally, we point out a connection with the issue of abstraction levels, as discussed
for example in [Gurevich 2000]. As in that work, we intend to model algorithms
on their natural level of abstraction. There certainly exists a reasonable level of
abstraction in which a method call, possible call-backs, and the whole resulting
conversation constitute just the evaluation of a single expression. Modeling at
that level of abstraction requires intra-step interaction with the environment. To
subdivide the steps in order to call this inter-step interaction would be to descend
to a lower level of abstraction.

3.2 Waiting for replies

When an ordinary algorithm issues a query, it cannot complete its step until it
receives a reply. Certainly not all algorithms are like this; why then is it reasonable
to restrict attention to ordinary algorithms?

One answer is relevance to practice. Although one can design algorithms that
don’t wait for replies to all their queries, such situations are uncommon. In partic-
ular, programs in AsmL always wait for replies.

Referring back to the discussion, in the preceding subsection, of local and global
environments, we recall that intra-step interaction is needed for modeling the al-
gorithm’s conversations with its local environment. In those conversations, if the
environment failed to provide an answer, the computation normally would hang.
An algorithm that sends a message to the global environment may well continue
its computation without waiting for an answer, especially since it may expect some
delay before the answer arrives, but this is not usually the case for messages to the
local environment, such as remote procedure calls.

3.3 Ignoring timing

The information from the environment that an ordinary algorithm uses is only the
replies to its queries, not, for example, the timing of those replies (or how hard the
user bangs the keyboard when typing input). Why is it reasonable to impose this
restriction?

Again, there is the justification from practice, including AsmL.
Second, some sorts of additional information could, if one wanted to consider

them, be included as part of the replies to a query. For example, nothing prevents
replies from including time stamps.

A more technical justification is that it is difficult to simultaneously permit
(bounded) parallelism within steps and dependence of the algorithm on the timing
of replies. Consider, for example, two parallel subprocesses each of which asks a
query and receives a reply from the environment. The relative timing of the two
replies, i.e., which came first, is information available to the algorithm but to nei-
ther of its two subprocesses. So if this information affects the computation, then it
is not clear in what sense the two subprocesses are independent, i.e., in what sense
there is genuine parallelism.
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For these reasons, we confine attention in the present paper and its sequel to
ordinary algorithms. More general algorithms, which can use information about
the timing of replies and which can complete a step even when some queries have
not been answered, will be treated in [Blass, Gurevich, and Rossman ].

4. QUERIES AND REPLIES

In the preceding discussion, we have taken for granted that there are clear notions of
“query” and “reply”. There are, however, some real difficulties with these concepts,
and the present section is devoted to discussing these difficulties and resolving them
at least for the purposes of the present paper. The central problem is a discrepancy
between what looks reasonable when we concentrate on algorithms and what looks
reasonable when we concentrate on environments. In this paper, we are interested
primarily in analyzing algorithms, so we shall, in the end, work with an algorithm-
centered view of queries and replies. But before settling on that view, we must
compare it with an environment-centered view, to ensure that what we do here
will be applicable in contexts where the environment plays a more central role. An
important example of such a context is the study of distributed algorithms, where
every agent is part of every other agent’s environment.

Let us begin with some basic comments on the queries issued by an algorithm. As
the examples above show, there can be many different sorts of queries — prompts,
print commands, requests for a non-deterministic choice, paying attention to an
input, etc. — so it is reasonable to think of a query as containing a label indicating
what type of query it is. Additional labels may also be involved, for example to
indicate which part of the algorithm’s program issued the query. These labels can
be taken from a fixed, finite set that depends only on the algorithm, not on its
state.

But a query can also have ingredients that depend on the state. For example, to
request the value f(a) of an external function f at an argument a, the algorithm
should issue a query that contains (at least) the function symbol f (or some other
label that specifies f) and the argument a. The f part is a label as in the previous
paragraph; it comes from a finite set fixed by the algorithm. But the a part is
different; it comes from the (base set of the) algorithm’s state, which is by no
means fixed by the algorithm.

The picture emerging from these considerations is that a query can be represented
by a finite tuple whose components are either labels or elements of the state. The
labels come from a finite set Λ determined by the algorithm. Since we treat only
small-step algorithms in this paper, there will be a finite bound, depending only on
the algorithm, for the lengths of the tuples that represent queries. The intuition
here is that assembling the components of a query is work, so a small-step algorithm
can only do a bounded amount of it in any step. For the same reason, the number
of queries issued during any step will be bounded.

Two technical points arise here. One is a matter of normalization. We could,
for example, insist that, in the tuples representing queries, labels precede state ele-
ments. We could also modify our set of labels to include tuples of the original labels
and thereby arrange that each query involves only one label. Such normalizations
may prove useful in some contexts, but we shall not need them in this paper. We
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present, in Section 7, a discussion both of such normalization and of what might
be called unnormalization, allowing queries of an even more general form than is
used here and in the rest of the paper. We shall show that neither normalization
nor a moderate degree of unnormalization makes any essential difference.

The second technical point concerns the possibility that the labels given with the
algorithm might also be elements of some states. In fact, if we adopt the “abstract-
ness” idea from [Gurevich 2000] (also used in [Blass and Gurevich 2003b]), namely
that every isomorphic copy of a state is also a state, then such an overlap between
states and Λ can really occur. This situation could lead to unwanted ambiguity
in the queries. The problem can be avoided in several ways. For example, the
assumption about isomorphic copies could be restricted to copies that use certain
“permissible” entities as elements of the state; members of Λ would not be per-
missible. Alternatively, we could take the components of queries to be elements of
the disjoint union X ⊔ Λ (where X is the state); “disjoint union” means that the
two sets are replaced by disjoint copies. For notational convenience, we shall adopt
this second approach, but we shall suppress all mention of the copies. In effect, we
write as though X and Λ were always disjoint.

How should replies to queries be represented? The simplest answer, and the one
that we shall adopt, is that a reply is represented by an element of the algorithm’s
state. The intuition behind this is that a reply must be something that “makes
sense” to the algorithm, and such things ought to be included in the state.

One might argue that, for the sake of symmetry, replies should have the same
form as queries, namely tuples. But that situation can easily be accommodated in
our picture by (1) adding to the vocabulary names for our labels, so that labels
can be represented by state elements, and (2) splitting any query that asks for a
tuple into several queries, each asking for one component of the tuple. Part (2)
wouldn’t be needed if the states of the algorithm are closed under formation of
tuples. Such closure is common for realistic algorithms; after all, programming
languages generally provide for tuples. We should also remark that allowing the
more general, tuple form of replies would cause no essential change in our work.

In view of these considerations, we adopt the convention that queries for state X
are tuples of elements of X ⊔ Λ and replies are elements of X , where Λ is a finite
set of labels fixed by the algorithm. This convention describes queries and replies
as seen by the algorithm. We must still discuss the environment’s point of view,
and here an important issue arises, namely abstractness.

Both the theory of ASMs as developed in [Gurevich 1995] (and even earlier) and
the axiomatic description of algorithms as begun in [Gurevich 2000] have among
their basic principles the abstractness of states — hence the terminology “abstract
state machine.” Abstractness means that all the important information about a
state must be explicit in its interpretation of function symbols. The specific identity
of the elements must never make a difference. In particular, an isomorphic copy of
a state X is again a state, and for computational purposes it does not differ from
X . This principle is reflected in the Abstract State Postulate of [Gurevich 2000]
and [Blass and Gurevich 2003b].

In our present situation, replacing a state X by another state, say X ′, with an
isomorphism i : X ∼= X ′ would change the queries and the replies. Suppose, for
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example, that the algorithm requests the value of some external function f at an
argument given by some term t (involving no additional external functions, for
simplicity). Then X will issue a query that looks like 〈f, a〉 where a is the value
of t in X (and where we’ve ignored possible additional labels), while X ′ issues
〈f, a′〉, where a′ = i(a) is the value of t in X ′. From the environment’s point of
view, this seems quite unreasonable. The environment would have to look into
the states X and X ′ to find out what those elements a and a′ represent, and it
would have to formulate its reply as an element of X or of X ′. Worse yet, the
very same tuple could be issued as a query by two isomorphic states but with
entirely different meanings. For example, a component of such a tuple could be
the element serving as the number 0 in one state and as the number 17 in another.
How is the environment to react when presented with such a query? An omniscient
environment, knowing what the states are, could handle the problem, but this will
never work if, for example, the environment consists simply of the other agents in
a distributed system.

The solution to this difficulty is in two parts — of which the first will be suffi-
cient for our present purpose of setting up suitable postulates to describe ordinary,
interactive, small-step algorithms. The second part will, however, be important for
making contact with what usually happens in practice.

The first part involves a closer examination of the idea of abstractness that led
to the requirement that a state be replaceable by any isomorphic copy. This idea
makes good sense when we consider an algorithm in isolation, but, as the preceding
discussion indicates, it must be modified in the presence of interaction. The mod-
ification, fortunately, is quite simple and natural. What is abstract — what can
be replaced by an isomorphic copy — is not the state of the algorithm alone but
the entire system, state plus environment. Thus, when we replace a state by an
isomorphic copy, we must correspondingly replace the environment in such a way
that the entire system is isomorphic to what it was before the replacements. In one
of the examples mentioned above, if an element represents 0 in the original state
and 17 in the new state, then this element must also undergo the corresponding
change in meaning to the environment.

In our axiomatic description of interactive algorithms, the environment will be
modeled simply by a function mapping queries to their replies. This will make it
easy to describe the change of environment that must accompany an isomorphic
change of state so as to produce an isomorphism of the entire system.

The second part of the solution involves looking at what happens in practice,
because what we usually regard as the environment of an algorithm — let us call
it the proper environment — does not change every time one replaces a state by
an isomorphic state. In particular, the environment’s view of queries and replies
seems quite insensitive to such changes of the state. This discrepancy arises because
the proper environment is not really the whole environment. Ordinarily, there is
an interface between the algorithm, with its internal representations of queries and
answers as described above, and the proper environment with its quite different view
of these items. Specifically, the proper environment will have a set Q of queries and
a set R of replies. Every state of the algorithm will have an interface consisting of
two functions. The first function maps the tuples that (for the algorithm) represent
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queries to elements in Q. The second function maps elements of R to elements of
the state, the algorithm’s internal representations of answers. For example, we
note that functions of this sort form a part of the TCP/IP protocol, transforming
data between a computer’s internal representation and a form suitable for internet
transmission.

In this picture, an interaction between the algorithm and the proper environment
proceeds as follows. The algorithm produces a representation of a query, a tuple of
elements from X⊔Λ. The first of the interface functions transforms this representa-
tion into a member q of Q. The environment recognizes q as a query and responds
(if at all) with a reply r ∈ R. The second of the interface functions transforms r
into an element of X , which the algorithm then uses to continue its step.

Recall, however, that we use the word “environment” to refer to everything that
can influence the course of the computation except for the algorithm and the current
state. Thus, the interface must be considered a part of the environment. The com-
plete environment contains both the proper environment and the interface. When
a state of the algorithm is replaced by an isomorphic copy, the proper environ-
ment does not change, but the interface does. Indeed, the interface functions are
simply composed with the isomorphism between the two states. In more detail, if
i : X ∼= X ′ then the first interface function for X , the function ϕ mapping queries
for X into Q, is replaced with ϕ ◦ i−1, where we regard i−1 as acting on queries by
acting on their components in X ′. Similarly, the interface function ψ mapping R
to replies for X is replaced with i ◦ ψ.

Remark 4.1. By passing to a lower level of abstraction, one can incorporate the
interface functions into the algorithm. That is, they can be programmed. But then,
if we replace the state by an isomorphic copy, we usually change the Q and R used
by these functions, and so (what remains of) the environment must again adjust to
this shift.

Remark 4.2. Although it is not immediately relevant to our work in this paper,
it seems worth noting that, according to our rather broad view of what constitutes
the environment, even the agent executing the algorithm can be regarded as part
of the algorithm’s environment. Certainly various details about this agent — how
fast it works, whether it performs parallel operations by interleaving sequential ones
and, if so, how to interleave, etc. — are best viewed as part of the environment.

5. POSTULATES

In this section, we introduce postulates intended to describe ordinary, interactive,
small-step algorithms. Recall that “ordinary” means that all queries issued by the
algorithm during a step must be answered before the algorithm can complete its
step and that only the answers, not their timing, are relevant. More precisely, the
algorithm’s actions depend only on its program, its state, and previous answers
from the environment. If the environment refuses to respond to a query, then the
algorithm hangs, i.e., there is no transition and no next state (not even a repetition
of the preceding state).

Our postulates are based on the postulates for (non-interactive) small-step algo-
rithms in [Gurevich 2000]. The new material in the present postulates incorporates
the view of interaction presented in Section 4. We also allow for the possibility that
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there is, in certain situations, no transition, either because there are unanswered
queries or because of some error conditions. Also, we have modified the postulates
to take trivial updates into account. Finally, we have reorganized some of the pos-
tulates. For example, the transition function, mentioned in the very first postulate
in [Gurevich 2000], now occurs later because it involves queries and replies (the
transition performed by an algorithm usually depends on the replies it received)
and not only states.

We do not repeat here the justifications given in [Gurevich 2000] for those parts
of the postulates that do not involve the environment, undefined transitions, or
trivial updates. When, in our discussions of the following postulates, we say that
something is (essentially) taken from [Gurevich 2000], this should be interpreted as
referring to [Gurevich 2000] for further explanation and justification.

We consider a fixed algorithm A. We may occasionally refer to it explicitly, for
example to say that something depends only on A, but usually we leave it implicit.

States Postulate: The algorithm determines

—a nonempty set S of states,

—a nonempty1 subset I ⊆ S of initial states,

—a finite vocabulary Υ such that every X ∈ S is an Υ-structure, and

—a finite set Λ of labels.

The first two items in this postulate, S and I, are as in the Sequential Time
Postulate of [Gurevich 2000]; our third item is part of the Abstract State Postulate
of [Gurevich 2000]. The fourth item, Λ, is new and is, as discussed above, used in
forming (internal representations of) queries.

Remark 5.1. We shall require S to be closed under isomorphisms, so it is really
a proper class rather than a set. Except in this remark, we ignore the distinction
between sets and classes, as it will be irrelevant to our work.

If X is a state, or indeed an arbitrary structure, we also write X for its base set.
We adopt the following conventions concerning vocabularies and structures. These

come mostly from [Gurevich 1995] with some minor modifications to agree with
[Gurevich 1997] and [Gurevich 2000].

Convention 5.2. —A vocabulary Υ consists of function symbols with specified
arities.

—Some of the symbols in Υ may be marked as static, and some may be marked as
relational. Symbols not marked as static are called dynamic.

—Among the symbols in Υ are the logic names: nullary symbols true, false, and
undef; unary Boole; binary equality; and the usual propositional connectives.
All of these are static and all but undef are relational.

—In any Υ-structure, the interpretations of true, false, and undef are distinct.

1In [Gurevich 2000], I and S were not required to be nonempty. This requirement seems, however,
to be an essential part of the concept of algorithm. An algorithm without an initial state couldn’t
be run, so is it really an algorithm? We therefore add “nonempty” to the postulate here.
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—In any Υ-structure, the interpretations of relational symbols are functions whose
values lie in {true, false}.

—The interpretation of Boole maps true and false to true and everything else
to false.

—The interpretation of equality maps pairs of equal elements to true and all other
pairs to false.

—The propositional connectives are interpreted in the usual way when their ar-
guments are in {true, false}, and they take the value false whenever any
argument is not in {true, false}.

Since relational symbols are interpreted as taking only the values true and false,
they behave like the predicate symbols commonly used in first-order logic. Partial
functions are treated as total functions that take the value undef outside the in-
tended domain of definition.

Definition 5.3. A potential query in state X is a finite tuple of elements of X⊔Λ.
A potential reply in X is an element of X .

Observe that we use a disjoint union X ⊔ Λ here, so if X and Λ are not disjoint
then they must be replaced by disjoint copies. For notational simplicity, we suppress
mention of the copies, pretending in effect that X and Λ are always disjoint.

Our definition of potential queries and potential replies incorporates our decision,
discussed in Section 4, to adopt the point of view internal to the algorithm. Thus,
our queries and replies are what were previously called internal representations.

Definition 5.4. An answer function is a partial map from potential queries to
potential replies.

An answer function α represents, from the algorithm’s point of view, the replies
obtained from the environment. α(q) is the reply to query q. Since we deal only
with ordinary algorithms, everything the algorithm does is determined by its pro-
gram, its state, and an answer function representing the previous interaction with
the environment. Thus, for our purposes, answer functions completely model the
environment.

We shall often need to refer to the restriction of an answer function α to a subset
Z of its domain; we use the standard notation α ↾Z for this restriction. We also
write β ⊆ α to indicate that β is a restriction of α; this notation agrees with the
ordinary set-theoretic meaning of ⊆ if we regard functions as sets of ordered pairs.

Interaction Postulate: The algorithm determines, for each state X , a causality
relation ⊢X , or just ⊢ whenX is clear, between finite answer functions and potential
queries.

The intuitive meaning of ξ ⊢X q is that if, in state X , the algorithm has issued
the queries in Dom(ξ) and received the answers given by ξ then it will issue query
q.

This view of causes implicitly involves our decision to treat only ordinary algo-
rithms. Consider, for example, an algorithm that issues a query q1 and, strictly
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later but without necessarily waiting for a reply to q1, issues q2. No causality rela-
tion exactly models this. Indeed, if we let the empty answer function cause q2, then
the fact that q2 is issued strictly later than q1 is lost. If, on the other hand, we take
the causes of q2 to be the answer functions that have q1 in their domains, then we
lose the fact that q2 could be issued before the reply to q1 is received. Thus, our
causality relations cannot capture this sort of timing information and are there-
fore inadequate for dealing with general algorithms. It is, however, adequate for
ordinary algorithms. The situation we have described, where q2 is issued strictly
after q1 but without waiting for an answer to q1, though certainly possible in an
algorithm, is not possible in an ordinary algorithm, because the algorithm would
make use of more than just the program, the state, and answers received from the
environment. To see this, consider the situation at two moments, first just before
the algorithm issues q1 and second just after q1 is issued (but before it is answered).
The program, the state, and the answers received from the environment are exactly
the same at both moments. Yet the algorithm can issue q2 at the second but not at
the first moment. Thus, such an algorithm is not ordinary. The limitation imposed
by ordinariness on the information an algorithm can use is just what is needed
to allow our simple representation of causality as a relation between (a state and)
answer function and a query. If we were dealing with non-ordinary algorithms or if
we were looking into the timing of queries and replies (beyond logical dependences),
then we would need a more general notion of causality, where a cause can consist
of not only an answer function but also a set of unanswered queries.

Definition 5.5. A context for a state X is an answer function that is minimal
(with respect to ⊆) among answer functions closed under causality. More explicitly,
it is an answer function α with the following properties:

—For all answer functions ξ and all potential queries q, if ξ ⊢X q and ξ ⊆ α, then
q ∈ Dom(α).

—For any Z ⊆ Dom(α), if

∀ξ ∀q [if ξ ⊢X q and ξ ⊆ α ↾Z then q ∈ Z],

then Z = Dom(α).

The intuition behind this definition is that a context describes the complete in-
teraction between the algorithm and its environment during one step. We think
of Dom(α) as the set of queries issued by the algorithm, and α(q) is the environ-
ment’s answer to query q. Intuitively, the first requirement in this definition says
that Dom(α) is closed under causality with respect to α. That is, if α includes
information ξ that causes the algorithm to issue query q, then q has in fact been
issued and answered. (The “and answered” clause here is part of what distinguishes
our present topic, ordinary algorithms, from general algorithms that don’t require
answers to all their queries.)

The second part of the definition reflects that Dom(α) is the smallest set with
this closure property. Intuitively, it means that no query is issued without a cause.
To connect this intuition with the formulation in the definition, suppose Z were
a counterexample to the second part of the definition, and consider some query
q ∈ Dom(α) − Z. If the algorithm had a cause to issue this query, say ξ ⊢X q and
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ξ ⊆ α, then, by the assumed property of Z, there must be a q′ ∈ Dom(ξ) − Z. If
the algorithm had a cause to issue q′, say ξ′, then we get some q′′ ∈ Dom(ξ′) − Z.
Repeating the argument, we get an infinite regress (possibly a loop) of causes, which
means that q wasn’t genuinely caused in the first place.

The second requirement in the definition can also be understood as an induction
principle. To prove a property for all elements of Dom(α), it suffices to prove it
for an arbitrary q ∈ Dom(α) under the assumption that the property holds for all
elements in the domain of some ξ ⊆ α that causes q.

Like any induction principle, this can be rewritten as a “minimal element” princi-
ple by considering the complement of Z. That principle reads: If ∅ 6= Z ⊆ Dom(α)
then there exist q ∈ Z and ξ ⊆ α such that ξ ⊢X q and Z ∩ Dom(ξ) = ∅. This
principle can be understood intuitively by observing that in any nonempty subset
Z of the set Dom(α) of issued queries there should be a query q that is issued first
(i.e., at least as early as any other member of Z). Any cause for this q, consisting
of strictly earlier queries and their replies, must not involve any queries from Z.
Since q should be caused by some restriction ξ of α, this ξ will be as required in
the minimal element principle.

Yet another way to view the definition is that the domain of a context α is
generated by the causality relation, in the sense that it is the closure (also called
the least fixed point) of a certain monotone operator based on the causality relation.
Specifically, for any answer function α, define a monotone operator ΓX,α, or just
Γα when X is understood, on sets of potential queries by

Γα(Z) = {q : (∃ξ ⊆ α ↾Z) ξ ⊢X q}.

The idea behind this definition is that if a set Z of queries has been issued and
if the answers were as given by α (i.e., α ↾Z), then the algorithm will issue the
queries in Γα(Z).

Definition 5.6. Let Γ be a monotone operator on subsets of a set S. That is, if
Y ⊆ Z ⊆ S then Γ(Y ) ⊆ Γ(Z). Its iteration is defined to be the sequence of sets
Γn given by

Γ0 = ∅, Γn+1 = Γ(Γn).

In this generality, the sequence continues transfinitely (so the n above can be any
ordinal number) with

Γλ =
⋃

ν<λ

Γν

for limit ordinals λ, but we shall never need transfinite iterations in the present
paper. The least fixed point, the common value of Γν for all sufficiently large ν, is
denoted by Γ∞.

All the operators Γ used in this paper will have Γ∞ = Γn for sufficiently large
finite n.

Recall from the general theory of fixed points that Γ∞ is the smallest (with
respect to ⊆) fixed point and also the smallest pre-fixed point of Γ. That is, it is
the smallest Z satisfying Γ(Z) = Z and also the smallest Z satisfying Γ(Z) ⊆ Z.
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Lemma 5.7. Let α be an answer function. If Γα
∞ ⊆ Dom(α) then α ↾Γα

∞ is
the unique context that is ⊆ α. If Γα

∞ 6⊆ Dom(α) then there is no context ⊆ α.

Proof Suppose first that Γα
∞ ⊆ Dom(α) and let β = α ↾Γα

∞. So Dom(β) =
Γα

∞. We must show that β is a context. The first requirement of the definition of
context means that Γα(Γα

∞) ⊆ Γα
∞, which is true as Γα

∞ is a fixed point of Γα.
For the second requirement, suppose Z is as there. To show Z = Γα

∞, it suffices to
show that Γα(Z) ⊆ Z, for the least fixed point Γα

∞ is also the least pre-fixed point.
But the hypothesis on Z in the second requirement says exactly that Γα(Z) ⊆ Z,
so this part of the proof is complete.

Conversely, suppose some subfunction β = α ↾Q of α is a context. We show
that its domain Q is Γα

∞ and, in particular, Γα
∞ ⊆ Dom(α). The first clause

in the definition of “context” ensures that Γα(Q) ⊆ Q. As Γα
∞ is the smallest

set with this closure property, it follows that Γα
∞ ⊆ Q. To establish the reverse

inclusion, we apply the second clause of the definition of context with Z = Γα
∞.

The hypothesis of that clause is satisfied, since Γα(Γα
∞) ⊆ Γα

∞. So the second
clause gives Γα

∞ = Q, as required. �

Corollary 5.8. If α and β are two distinct contexts for the same state, then
there is some q ∈ Dom(α) ∩ Dom(β) with α(q) 6= β(q).

Proof Otherwise, α ∪ β would be an answer function that includes two distinct
contexts, contrary to the lemma. �

To understand the intuition behind the lemma, think of α as describing the
answers that the environment would give if the appropriate queries were issued.
That is, if the algorithm were to issue q ∈ Dom(α) then the environment would
reply with α(q), but if the algorithm were to issue a query not in Dom(α) then the
environment would not reply.

In the “good” case of the lemma, where Γα
∞ ⊆ Dom(α), the algorithm will

issue all the queries in Γα
∞, the environment will reply to all of them, and no

additional queries will be issued (because Γα
∞ is closed under causality, i.e., is a

pre-fixed point of Γα). The interaction between the algorithm and its environment
is complete, and a state transition can occur.

In the “bad” case, where Γα
∞ 6⊆ Dom(α), the algorithm will issue at least one

query to which the environment fails to reply. In this case, this step of the compu-
tation hangs; there is no transition.

The next postulate will describe the transition from one state to the next, in
terms of the updates performed by the algorithm during this step. We begin by
specifying the format of updates.

Definition 5.9. A location in a state X is a pair 〈f,~a〉 where f is a dynamic
function symbol from Υ and ~a is a tuple of elements of X , of the right length to
serve as an argument for the function fX interpreting the symbol f in the state
X . The value of this location in X is fX(~a). An update for X is a pair (l, b)
consisting of a location l and an element b of X . An update (l, b) is trivial (in
X) if b is the value of l in X . We often omit parentheses and brackets, writing
locations as 〈f, a1, . . . , an〉 instead of 〈f, 〈a1, . . . , an〉〉 and writing updates as 〈f,~a, b〉
or 〈f, a1, . . . , an, b〉 instead of (〈f,~a〉, b) or (〈f, 〈a1, . . . , an〉〉, b).
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The intended meaning of an update 〈f,~a, b〉 is that the interpretation of f is to
be changed (if necessary, i.e., if the update is not trivial) so that its value at ~a is b.
This intention is formalized in the following postulate.

Update Postulate: For any state X and any context α for X , the algorithm
either fails or provides an update set ∆+

A(X,α) (or both). It produces a next state
τA(X,α) if and only if it doesn’t fail. If there is a next state X ′ = τA(X,α), then
it

—has the same base set as X ,

—has fX′(~a) = b if 〈f,~a, b〉 ∈ ∆+
A(X,α), and

—otherwise interprets function symbols as in X .

In [Gurevich 2000], the existence of a transition function τA was part of the
Sequential Time Postulate, and the unchangeability of the base set was part of
the Abstract State Postulate. The present Update Postulate incorporates several
additional ingredients, which deserve some comments.

First, the input of the transition function is no longer simply a state; it also
includes a context. The transition performed by the algorithm at the end of a
step can (and usually does) depend not only on the previous state but also on the
information received from the environment during that step.

Second, we have incorporated the idea that there is no transition if some queries
are issued but remain unanswered. Thus, the domain of the transition function
contains only pairs (X,α) where α is a context, i.e., where all the appropriate
queries have been issued and answered.

Third, having included in vocabularies the possibility of marking some symbols
as static, we make this marking effective by insisting that the interpretations of
static symbols cannot change2 during a state transition. Indeed, since locations
begin, by definition, with a dynamic function symbol, only these symbols can be
the subject of updates, and so only these can be changed by the algorithm in the
transition from one state to the next. If we were also considering changes of state
produced by the environment, between the algorithm’s steps, then these changes
would also be required to leave the base set and the static functions unchanged.

Fourth, our ∆+ is not quite the same as the ∆ of [Gurevich 2000], which is why
we added + to the notation. We shall occasionally need to refer to the old ∆,
modified to incorporate interaction with the environment, so we define it here and
comment on its relation to ∆+.

Definition 5.10. If X ′ = τA(X,α) is defined, then ∆A(X,α) is the set of those
updates 〈f,~a, b〉 such that fX′(~a) = b 6= fX(~a).

Thus, ∆A(X,α) describes the changes in the dynamic functions between X and
X ′. Inspection of the definition and the Update Postulate yields the following
observation.

2It was intended in [Gurevich 2000] that the logic names be static in this sense, but the formulation
there was slightly weaker.
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Lemma 5.11. If τA(X,α) is defined, then ∆A(X,α) is the set of non-trivial
updates in ∆+

A(X,α).

It may seem strange, particularly to a reader acquainted with [Gurevich 2000]
and [Blass and Gurevich 2003b], to work with ∆+ rather than ∆. Why should we
pay attention to trivial updates that have no effect on the transition computed by
the algorithm and therefore have no effect on a run of the algorithm? The answer
is that, although trivial updates are irrelevant when the algorithm runs in isolation,
they become significant when the algorithm is part of a larger parallel or distributed
computation. The reason is that a trivial update can, in such a situation, clash
with an update produced by another part of the computation. Since the occurrence
of a clash is important, so is the trivial update that caused it. So a major reason
for introducing ∆+ is to prepare the way for future papers in which small-step
algorithms occur as agents in larger computational processes. In fact, we shall
already need ∆+ in the sequel to this paper, in order to define parallel composition
as an operation on algorithms.

A fifth difference from the set-up in [Gurevich 2000] is that we allow explicit
failure as an alternative to a state transition, even when α is a context for X so
that the algorithm should be ready to complete its step in the situation (X,α).
Such failures can arise in several ways. One is that the environment has given an
inappropriate reply, which the algorithm cannot use. For example, if the algorithm
asks the environment to (non-deterministically) choose a member from a certain
set and the environment’s answer is not in that set, then the algorithm may fail to
continue its computation.

Another possible reason for failure is that the updates in ∆+
A(X,α) contradict

each other. We say that ∆+
A(X,α) clashes if it contains two different updates of the

same location, 〈f,~a, b〉 and 〈f,~a, b′〉 with b 6= b′. In this case, the algorithm must
fail in the situation (X,α); it cannot have a next state X ′ because fX′(~a) would be
subject to contradictory requirements.

Remark 5.12. There is an essential difference between these examples of failure,
where τA(X,α) is undefined while α is a context, and the situations where τA(X,α)
is (necessarily) undefined because α is not a context. In fact, there are three
situations to be distinguished .

(1) α properly includes a context β. In this case, there may be a transition to
τA(X,β), which is what we would ordinarily be interested in. α contains some
extra queries (and their answers), which the algorithm would not actually issue.
This situation would be of interest only if there were some reason for considering
those extra queries, for example if another algorithm were using the same α.

(2) α includes no context. In this case, there are queries that are caused by sub-
functions of α but have not yet been answered — perhaps not even asked.
So the algorithm, being an ordinary one, cannot go ahead with a transition.
But the situation may change as more answers are received (and possibly more
queries issued), leading to enough information for the algorithm to complete
its step. Formally, this means that α may be included in some context β and
τA(X,β) may be defined.

(3) α is a context but τA(X,α) is nevertheless undefined. In this case, the algo-
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rithm’s interaction with the environment seems to have gone well, in that all
the right queries have been asked and answered. Nevertheless, something has
gone wrong. Perhaps the algorithm has produced clashing updates. Perhaps
the environment has given an inappropriate answer, which the algorithm can-
not use. Perhaps there is some other reason for the algorithm to fail. In any
case, there are no prospects for correcting the problem. No further queries are
to be asked, so there is nothing the environment can do about the situation,
nor does the algorithm provide a way out. We are dealing not with a delay, as
in (2), but with a crash.

It is useful to distinguish case (3) from the other cases, and we have done so by
having the algorithm explicitly fail in those situations where α is a context for X
but there is no transition. Another way to achieve the same objective would be to
introduce a new object, say “Error”, as a possible value of τA, to require τA(X,α)
to be defined whenever α is a context for X , and to let τA(X,α) = Error if τA(X,α)
would be undefined in our set-up.

This would be useful, for example, if we were dealing with runs in which either
the algorithm or the environment can be responsible for a state transition. In such
a case, a run that ends with a transition from a certain state X to Error would differ
from the same run minus the transition to Error, i.e., ending at X . The difference
is that the latter run could be extended by an environmental transition to a new
state Y (followed perhaps by transitions caused by the algorithm), whereas the
former run is definitely ended. Another way to express the difference is that, in
the former run the algorithm attempted to progress from state X and ran into an
insurmountable problem, whereas in the latter case, the algorithm made no such
attempt.

Yet another way to achieve the same goal, instead of introducing “Error”, would
be to explicitly indicate, in a run, all those places where the algorithm attempted
a transition (successfully or perhaps, at the end of a run, unsuccessfully). This
approach looks especially reasonable if one wants to indicate, throughout a run,
which transitions were caused by the environment and which are the work of the
algorithm.

Sixth, we should comment briefly on the domain of definition of ∆+. As indicated
above, this domain must be included in the set of pairs (X,α) of a state X and a
context α, for it is only for such pairs that a updates are ready to be performed.
The domain of ∆+ must include all such pairs for which the algorithm doesn’t fail,
for these pairs must produce a next state. There remains the question of pairs
where X is a state, α is a context for it, and the algorithm fails. Our postulate
makes no commitment as to whether such pairs should be in the domain of ∆+.

One could reasonably require such pairs not to be in the domain of ∆+ because
updates are irrelevant if there is no next state. On the other hand, programs often
describe a set of updates that would be performed if no crash prevented it. This
happens, for example in AsmL. See also our discussion above of the situation where
there can be no next state because there are conflicting updates; that discussion
presumed that the notion of update makes sense even in such a failure situation.

The definition, in Section 6, equivalence of algorithms will imply that the values
∆+(X,α) are irrelevant when the algorithm fails on (X,α). That is, these val-
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ues could be arbitrarily changed or deleted, and the resulting algorithm would be
equivalent to the original one. Thus, a reader who wants ∆+ to be undefined at all
failing pairs (X,α) can simply restrict any given ∆+ to the non-failing pairs. At
the other extreme, a reader who wants ∆+(X,α) to be defined for all states X and
contexts α can extend any given ∆+ to those pairs where it was undefined, say by
giving it the value ∅ there.

Definition 5.13. If i : X ∼= Y is an isomorphism of states, extend it to act on
potential queries by applying i to components from X and leaving components
from Λ unchanged. Also extend it to act on locations, by acting componentwise on
the tuple of elements of X and leaving the dynamic function symbol unchanged.
Finally, extend it to act on updates by acting on both components, the location
and the new value. We use the same symbol i for all these extensions, mapping the
potential queries, locations, and updates of X bijectively to those of Y .

Notice that any isomorphism i : X ∼= Y of states, induces a one-to-one corre-
spondence between answer functions for X and answer functions for Y ; the corre-
spondence sends any ξ to i ◦ ξ ◦ i−1 (where, as usual, composition works from right
to left).

Isomorphism Postulate:

—Any structure isomorphic to a state is a state.

—Any structure isomorphic to an initial state is an initial state.

—Any isomorphism i : X ∼= Y of states preserves causality, i.e., if ξ ⊢X q then
i ◦ ξ ◦ i−1 ⊢Y i(q).

—If i : X ∼= Y is an isomorphism of states and if α is a context for X , then
—the algorithm fails in (X,α) if and only if it fails in (Y, i ◦ α ◦ i−1), and
—if the algorithm doesn’t fail, then i[∆+(X,α)] = ∆+(Y, i ◦ α ◦ i−1)

It follows from the last part of the Isomorphism Postulate that, under the assump-
tions there, if τ(X,α) is defined, then so is τ(Y, i◦α◦ i−1), and i is an isomorphism
from the former to the latter. It follows further that i[∆(X,α)] = ∆(Y, i ◦α ◦ i−1).

Here and in the rest of the paper, we use the following convention to avoid
needless repetition.

Convention 5.14. An equation between possibly undefined entities (like ∆(X,α))
means, unless the contrary is explicitly stated, that either both sides are defined
and equal, or neither side is defined.

The first two parts of the Isomorphism Postulate were in the Abstract State
Postulate of [Gurevich 2000]. So was the fourth part, formulated in terms of the
transition function, without contexts, and without the possibility of explicit failure.
So the idea behind this fourth part comes directly from [Gurevich 2000]; we have
merely adapted it to the present framework. The third part of the postulate is
new, but it is the natural thing to require of the causality relations. The whole
Isomorphism Postulate can be summarized as “isomorphisms preserve everything”.

The Isomorphism Postulate requires agreement of the update sets ∆+ only in
situations where the algorithm doesn’t fail. There are two reasons for this, an
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intuitive one and a technical one. The intuitive reason is that paying attention to
∆+ in cases of failure would put us at a lower level of abstraction. It is true that
a program may well produce a tentative set of updates before finding that it must
crash, but those updates do not affect the externally observable behavior of the
program. And that behavior is what our approach seeks to describe. The technical
reason is simply that our postulate is weaker than the alternative, in which the
update sets∆+ would be required to agree even in case of failure. The main result
to be proved in the sequel to this paper, namely that every algorithm is behaviorally
equivalent to an ASM, becomes stronger if the class of algorithms is made broader
by weakening the postulates.

The last part of the Isomorphism Postulate tacitly uses the fact that i◦α ◦ i−1 is
a context for Y . This fact follows trivially from the earlier parts of the Isomorphism
Postulate, which ensure that the isomorphism i preserves everything used in the
definition of “context.”

Remark 5.15. In the last two parts of the Isomorphism Postulate, the answer
function α is replaced by i ◦ α ◦ i−1, and similarly for ξ, when X is replaced by Y .
This formalizes the fact, discussed in Section 4, that when we replace a state by
an isomorphic copy, we must correspondingly adjust the environment, so that the
entire system, state plus environment, is isomorphic to what it was before. Since
we model environments by answer functions, this adjustment of the environment is
formalized as a change of the answer function induced by the isomorphism between
the states.

In more detail, suppose that i : X ∼= Y , that α is an answer function for X ,
that q ∈ Dom(α) is a query for X , to which α gives the reply r = α(q). Then the
corresponding query and reply for Y are i(q) and i(r), respectively. So the adjusted
environment (i.e., answer function for Y ) α′ should produce the answer i(r) for the
query i(q). That is, α′(i(q)) = i(r) = i(α(q)). Since this is to happen for all q, we
have α′ ◦ i = i ◦ α, or equivalently α′ = i ◦ α ◦ i−1. This explains the i ◦ α ◦ i−1 in
the Isomorphism Postulate.

It may be instructive to analyze the situation in terms of the interface functions
described in Section 4. As in that discussion, let Q and R be the sets of queries and
replies as seen by the proper environment. So a state X of the algorithm comes
with two interface functions. One of these, say ϕX , maps internal representations
of queries (i.e., potential queries in the sense of this section) to members of Q.
The other, say ψX , maps members of R to internal representations of replies (i.e.,
potential replies in the sense of this section). The proper environment’s answers are
given by a partial function θ : Q → R. Our answer functions combine θ with the
interfaces to produce a partial function from potential queries to potential replies,
namely

α = ψX ◦ θ ◦ ϕX .

Recall that the interface functions for the isomorphic states X and Y are related
via the isomorphism i as

ϕY = ϕX ◦ i−1 and ψY = i ◦ ψX .
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Now the same function θ as above produces for the state Y the answer function

α′ = ψY ◦ θ ◦ ϕY

= (i ◦ ψX) ◦ θ ◦ (ϕX ◦ i−1)

= i ◦ α ◦ i−1.

This again accounts for the i ◦ α ◦ i−1 in the Isomorphism Postulate.

We record for future reference an immediate consequence of the Isomorphism
Postulate.

Lemma 5.16. Suppose i : X ∼= Y is an isomorphism of states and α is an answer
function for X. Then, for each k,

i
(

Γα
k
)

= Γi◦α◦i−1

k,

where the Γ on the left side is calculated in X and that on the right in Y .

Bounded Work Postulate

—There is a bound, depending only on the algorithm A, for the lengths of the
tuples that serve as queries. That is, the lengths of the tuples in Dom(α) are
uniformly bounded for all contexts α and all states.

—There is a bound, depending only on A, for the cardinalities |Dom(α)| for all
contexts α in all states.

—There is a finite set W of terms, depending only on A, with the following prop-
erties. Assume

—X and X ′ are states,
—α is an answer function for both X and X ′, and
—each term in W has the same values in X and in X ′ when the variables are

given the same values in Range(α).

If α ⊢X q, then also α ⊢X′ q. In particular, q is a potential query for X ′. If α is
a context for X , then

—if the algorithm fails for either of (X,α) and (X ′, α), then it also fails for the
other, and

—if it doesn’t fail, then ∆+(X,α) = ∆+(X ′, α).

The part of this postulate referring to ∆+ is very similar to the Bounded Explo-
ration Postulate of [Gurevich 2000]. It says that the work done by the algorithm
in producing updates involves looking only at the values of the finitely many terms
in W . In [Gurevich 2000], these terms were closed terms; here they can contain
variables to be replaced by the values given by the environment’s replies. This
simply means that the algorithm is permitted to use those replies in computing its
updates. We also accommodate the possibility that the algorithm fails to make a
transition in one of (X,α) and (X ′, α′); it must then also fail in the other. As in
[Gurevich 2000], we shall call a set W as in the postulate a bounded exploration
witness for the algorithm A.
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The Bounded Work Postulate, like the Isomorphism Postulate, requires agree-
ment of the update sets∆+ only when there is no failure. The comments we made
about this aspect of the Isomorphism Postulate — that our version avoids de-
scending to a lower level of abstraction and that, by weakening the postulate, we
strengthen the main theorem — apply here as well.

Remark 5.17. The last part of the Bounded Work Postulate is obvious in the
special case, often arising in practice (for example in AsmL), that X and X ′ have
the same reducts to the static part of the vocabulary and the only dynamic function
symbols are nullary ones. Indeed, the set of dynamic function symbols can then
serve as a bounded exploration witness.

Let us amplify a bit the explanation of the role of the variables that can occur in
the terms in W . As indicated above, these variables serve as place holders for replies
to be obtained from the environment. There is, however, no specific connection
between the variables and the replies (or the queries leading to the replies). That
is, any reply to any query can be used as the value of any variable. The reason
for allowing so much freedom in the assignment of values to variables is that the
restrictions that one might think of imposing, requiring a particular variable to
represent the reply to a particular query, cannot be formulated without knowing
what the queries are, and that depends on the state and the replies to previous
queries. Indeed, infinitely many queries are possible if we consider all possible states.
The bounded exploration witness, on the other hand, must depend only on the
algorithm, not on the state or the environment. Thus, the freedom that we allow,
in assigning to the variables arbitrary elements of Range(α), is necessary, because
we cannot formulate, on the basis of the algorithm alone, reasonable restrictions on
that freedom.

Notice that this freedom, by allowing very diverse assignments of values to vari-
ables, makes the requirements on X and X ′ in the Bounded Work Postulate, specif-
ically the requirement that elements of W have the same value, rather restrictive.
This, in turn, makes the postulate itself rather weak — agreement on causality and
updates is demanded only for a restricted collection of pairsX,X ′. Therefore, when
we prove in the sequel to this paper that all algorithms satisfying our postulates
are equivalent to ASMs, that theorem will be stronger, i.e., will apply to a broader
class of algorithms, than it would without the freedom allowed in assigning values
to variables in the Bounded Work Postulate.

The part of the Bounded Work Postulate referring to ⊢ says that the computation
of queries to issue during a step is subject to the same boundedness requirement as
the computation of the transition at the end of the step. These first two items in
the postulate say that only a bounded amount of querying occurs in a step, both as
regards the number of queries and as regards their complexity, i.e., their length as
tuples. As the name suggests, all parts of the Bounded Work Postulate are intended
to formalize the essential property of small-step algorithms that there is a uniform
bound on the amount of work, of any sort, that the algorithm can do in one step.

The last sentence of this postulate tacitly uses that α is also a context for X ′.
We now prove that this tacit assumption is correct. It is easy to verify the first
clause in the definition of “context.” We are given ξ and q such that ξ ⊢X′ q and
ξ ⊆ α, and we must show that q ∈ Dom(α). But the preceding part of the Bounded
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Work Postulate assures us that ξ ⊢X q, so the desired conclusion follows since α is
a context for X .

The verification of the second clause in the definition of “context” is no harder.
We are given a set Z ⊆ Dom(α) such that

∀ξ ∀q [if ξ ⊢X′ q and ξ ⊆ α ↾Z then q ∈ Z],

and we must show that Z = Dom(α). Again, the preceding part of the Bounded
Work Postulate allows us to replace ⊢X′ with ⊢X , and then the desired conclusion
follows from the assumption that α is a context for X .

The postulates presented above determine the notion of algorithm to be studied
in this paper and its sequel.

Definition 5.18. An ordinary, interactive, small-step algorithm is any entity sat-
isfying the States, Interaction, Update, Isomorphism, and Bounded Work Postu-
lates.

We shall often use without explicit mention the following consequence of the
Bounded Work Postulate.

Lemma 5.19. There is a finite bound, depending only on the algorithm, on the
lengths of the iterations Γα

n for all contexts α for all states X.

Proof The iteration cannot have more steps than the number of elements in the
final set Γα

∞. But for contexts, this final set is Dom(α), and its cardinality is
bounded because of the second part of the Bounded Work Postulate. �

As a consequence of this lemma, we shall never have to deal with transfinite
iterations of the operators Γα.

To relate our work here to that in [Gurevich 2000] and [Blass and Gurevich
2003b], it is useful to know that the Bounded Work Postulate, formulated here in
terms of ∆+, implies the earlier formulation using ∆. This will not necessarily be
true for the same bounded exploration witness, but it can always be achieved by
enlarging the bounded exploration witness. The proof requires knowing that the
elements of a state X that occur in updates of ∆+(X,α) are among the values of
the terms in the bounded exploration witness, and this in turn requires knowing
similar information for queries. We therefore begin by establishing this preliminary
information, which will also play a role in the sequel paper, in the proof that our
algorithms can be simulated by ASMs. The essential idea here is the same as in
[Gurevich 2000, Lemma 6.2], but the proof is more complicated because we need
to take contexts α and their fragments into account.

Definition 5.20. For any answer function α, we write αn for α ↾ Γα
n. (Recall

that Γα
n is the nth stage of the iteration of the operator Γα.)

Thus, in particular, α0 is the empty function. If α is a context and if the iteration
of Γα stabilizes after n steps, then αn = α ↾ Γα

∞ = α.
It will be convenient to normalize our bounded exploration witnesses as follows.

Convention 5.21. A bounded exploration witness W is always assumed to be
closed under subterms and to contain a variable.
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Notice that, if W satisfies the requirements in the postulate for a bounded ex-
ploration witness, then so does any finite set of terms that includes W . Closing W
under subterms and adding a variable certainly preserve finiteness, so our conven-
tion entails no loss of generality.

Definition 5.22. Let X be a state and ξ an answer function for X . An element
of X is critical for ξ if it is the value of some term in W for some assignment of
values in Range(ξ) to its variables.

We note that, since W contains a variable, all elements of Range(ξ) are critical
for ξ. Note also that, if ξ ⊆ η then anything critical for ξ is also critical for η.

Proposition 5.23. Let X be a state and α a context for X. Suppose we have
n, ξ and q such that ξ ⊆ αn and ξ ⊢ q. Then all the components in X of q are
critical for αn.

Proof We proceed by induction on n. The proof for the base case n = 0 is
essentially a subproof of the proof of the induction step, so we give only the latter.

So consider n, ξ, and q as in the proposition, and assume the proposition is true
for smaller values of n. Let x ∈ X be a component of q. Let Y be the structure
obtained from X by replacing the one element x by a new (i.e., not in X) element
y. Since Y is isomorphic to X , it is a state.

Could ξ fail to be an answer function for Y ? One possibility is that one of its
reply values is not an element of Y . That means that this value is x, since all other
members of X are in Y . But then x is critical, as required.

The other possibility is that some q′ ∈ Dom(ξ) is not a query for Y , i.e., that one
of its components in X is not in Y and is therefore x. But from q′ ∈ Dom(ξ) and
ξ ⊆ αn = α ↾Γα

n and the definition of Γα, we infer that there is ξ′ ⊆ αn−1 such
that ξ′ ⊢ q′. Then, by induction hypothesis, all the components of q′, including in
particular x, are critical for αn−1 and therefore also for αn. So we again have the
desired conclusion.

Thus, if ξ fails to be an answer function for Y , then we have the desired result,
namely that x is critical. It remains to consider the case that ξ is an answer function
for Y .

Could a term in W have different values in X and in Y when its variables are
given the same values in Range(ξ)? Certainly not if the term is itself a variable,
so suppose the term is f(t1, . . . , tn). We can arrange, by passing to subterms if
necessary (since W is closed under subterms), that each ti has the same value in
Y as in X . But then, thanks to the definition of Y , the only way f(t1, . . . , tn) can
have different values in the two states is for its value to be x in X and y in Y . Then
x is critical, as required.

So it remains only to consider the case that ξ is an answer function for both X
and Y and each term in W gets the same values in X and Y when the variables get
the same values in Range(ξ). Then, because W is a bounded exploration witness
and because ξ ⊢X q, we have ξ ⊢Y q. In particular, q is a potential query for Y .
But this is absurd, since one of the components of q, namely x, is not in Y ⊔ Λ. �

Proposition 5.24. Let X be a state and α a context for X. For any update
〈f,~a, b〉 ∈ ∆+(X,α), all the components of ~a as well as b are critical for α.
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Proof Let x be either a component of ~a or b. As in the preceding proof, let Y be
the state obtained from X by replacing x by a new element y.

If x is among the values of α then it is critical for α as required. So we assume
from now on that x /∈ Range(α) and thus Range(α) ⊆ Y .

Furthermore, every element q of Dom(α) is, since α is a context, caused by some
ξ ⊆ α. Applying Proposition 5.23 with n large enough so that αn = α, we obtain
that all of q’s components in X are critical for α. So if x is such a component
then x is critical for α, as required. So we assume from now on that x is not a
component of any query in Dom(α). Thus, Dom(α) consists of potential queries
for Y . Combining this with the result of the preceding paragraph, we have that α
is an answer function for Y as well as for X .

As in the proof of Proposition 5.23, we see that, if some term in W has different
values in X and Y when its variables are given the same values in Range(α), then
the smallest such term has value x in X , and so x is critical for α, as required.
Therefore, we assume from now on that each term in W has the same values in X
and Y when the variables get the same values in Range(ξ). Since W is a bounded
exploration witness and α is a context for X , it follows that α is also a context for
Y and ∆+(X,α) = ∆+(Y, α). In particular, 〈f,~a, b〉 ∈ ∆+(Y, α), and so 〈f,~a, b〉 is
an update for Y . But this is absurd, as this update involves x, which is not in Y .
�

The next proposition is the same as part of the Bounded Work Postulate except
that ∆ has replaced ∆+.

Proposition 5.25. There is a finite set W of terms, depending only on A, with
the following properties. Assume

—X and X ′ are states,

—α is an answer function for both X and X ′, and

—each term in W has the same values in X and in X ′ when the variables are given
the same values in Range(α).

If α is a context for X and A does not fail in (X,α), then ∆(X,α) = ∆(X ′, α).

Proof Begin with a bounded exploration witness W0, and obtain W as follows.
For each dynamic function symbol f , say n-ary, and each n terms t1, . . . , tn ∈ W0,
choose some terms t′i such that (i) each t′i results from ti by bijectively renam-
ing variables and (ii) no two of the t′i have a variable in common. Then form
f(t′1, . . . , t

′
n) and letW be the union ofW0 and the set of all these terms f(t′1, . . . , t

′
n)

and all the t′i. Clearly, W is finite. We shall show that it is as required in the propo-
sition. Let X,X ′, α be as in the hypothesis of the proposition.

By Lemma 5.11, the Bounded Work Postulate, and symmetry, it suffices to check
that any update in ∆+(X,α) = ∆+(X ′, α) that is trivial in X is also trivial in X ′.
Let the update in question be 〈f,~a, b〉. So fX(~a) = b, and we must show that
fX′(~a) = b.

By Proposition 5.24, we know that each ai is the value in X of some term ti ∈W0

for some assignment of values in Range(α) to the variables. (We may have a different
assignment for each i.) Let t′i be as in the definition of W above, for this particular
f and t1, . . . , tn. Since t′i is the same as ti except for the choice of variables, ai is
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the value in X of t′i for some assignment of values in Range(α) to the variables.
Furthermore, since the various t′i share no variables, we can find a single such
assignment that simultaneously gives each ti the corresponding value ai in X . So
that assignment also gives f(t′1, . . . , t

′
n) the value fX(~a) = b.

Since all the t′i and f(t′1, . . . , t
′
n) are in W , they have the same values in X ′ as in

X . That is, each ti denotes ai and f(t′1, . . . , t
′
n) denotes b in X ′. But this means

that fX′(~a) = b, as required. �

6. EQUIVALENCE AND CAUSALITY

Having defined ordinary, interactive, small-step algorithms by means of our pos-
tulates, we devote this section to the question of when two algorithms of this sort
should be considered the same. As in [Gurevich 2000] and [Blass and Gurevich
2003b], we use a strong form of behavioral equivalence: Two algorithms are the
same if they do the same thing in all circumstances. As in [Gurevich 2000; Blass
and Gurevich 2003b], this means in particular that equivalent algorithms have the
same states, the same initial states, the same failures, and the same update sets
when they don’t fail. In addition, since our algorithms, unlike those of [Gurevich
2000; Blass and Gurevich 2003b] issue queries, equivalence of two algorithms should
require that they issue the same queries.

We should be more precise about both “the same updates” and “the same
queries”. In [Gurevich 2000; Blass and Gurevich 2003b], the requirement on up-
dates was that they should be the same for both algorithms, provided, of course,
that the states to be updated are the same. For interactive algorithms, the update
set depends not only on the state but also on the context, i.e., on the information
provided by the environment. So we should require equivalent algorithms to pro-
duce the same updates when they are working in the same state with the same
context.

For queries, the requirement is a bit broader. Our algorithms do not issue queries
in a context; by the time a context has been obtained, all the queries for that step
have been issued and answered. We should require equivalent algorithms to issue
the same queries when they are working in the same state and have received the
same replies from the environment up to a certain point in the execution of their
step. Part of our task in this section will be to give a precise definition of this;
another part will be to consider alternative definitions and to show either why they
are inappropriate or that they are equivalent to the chosen one.

Notice that this work is logically prior to the “evident” requirement that equiva-
lent algorithms should produce the same updates in any state and context, for the
notion of context depends on what queries are issued. In particular, our formula-
tion of the “same queries” requirement must be at least strong enough to ensure
that equivalent algorithms have, in each state, the same contexts; only then does
the “same updates” requirement make sense.

Remark 6.1. The definition of equivalence in [Gurevich 2000] can be formulated
very succinctly as requiring two equivalent algorithms to agree exactly on everything
mentioned in the postulates: They have the same states, the same initial states,
and the same transition functions. It is tempting to adopt the same strategy here,
at least as long as failures are not involved. (It would be clearly inappropriate to
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require the update sets to agree when the updates are never performed because
the algorithms fail.) Require two equivalent algorithms to have the same states,
the same initial states, the same causality relation ⊢X for every state X , the same
failures, and the same update set ∆+(X,α) for every state X and context α where
they do not fail. Unfortunately, this definition is inappropriate. Specifically, it is
too restrictive, as the following examples show.

Example 6.2. Consider two algorithms that are identical except that, in certain
states X , the causality relation of one algorithm is empty while that of the other
consists of a single instance, namely {(q, r)} ⊢X q′ for certain queries q and q′ and a
certain reply r. In such a state, the first algorithm obviously issues no queries. The
second also issues no queries; although its causality relation is nonempty, the cause
(q, r) can never arise and make the algorithm produce q′, because q would have to
be produced first and there is no way for this to happen. Thus, although the two
algorithms have different causality relations, they will, in all possible circumstances,
produce the same queries. Since we have assumed that they are identical except
for the causality relations, they always behave the same way and should therefore
be considered equivalent.

It is easy to build more complicated examples based on the same theme, namely
that an instance of a causality relation might as well be omitted if the cause in-
volved in it cannot arise. In the example above, the cause {(q, r)} cannot arise
simply because q has no possible cause. In more complicated examples, q might
have a cause, involving queries that have no causes, or perhaps involving queries
whose causes involve queries with no causes, etc. The following example is another
variation on this theme.

Example 6.3. Consider again two algorithms that are identical except for the
causality relations for certain states. In the one algorithm, this causality relation
has only the following instances.

∅ ⊢ q1, {(q1, r1)} ⊢ q2.

In the other algorithm, there are the same two instances of ⊢ plus

{(q1, r
′
1), (q2, r2)} ⊢ q3,

where r′1 6= r1. Here again, the additional instance of causality in the second
algorithm can never operate. Indeed, in order for its cause, {(q1, r

′
1), (q2, r2)} to

occur, the query q2 must first be produced, and this requires that the reply to q1
is r1, not r′1. So again, these algorithms should be equivalent despite the difference
in their causality relations.

The next example exhibits a different sort of variation in causality relations;
instead of an irrelevant instance of causality, it has an irrelevant ingredient in a
cause.

Example 6.4. Suppose the first algorithm has, in certain states, just the following
three instances of causality.

∅ ⊢ q1, {(q1, r1)} ⊢ q2, {(q2, r2)} ⊢ q3.
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Let the other algorithm have, instead,

∅ ⊢ q1, {(q1, r1)} ⊢ q2, {(q1, r1), (q2, r2)} ⊢ q3.

So the only difference is that the cause of q3 in the second algorithm includes the
reply r1 for q1. But even in the first algorithm, this reply is needed in order for
q3 to be produced. Without (q1, r1), the query q2 cannot be produced, and so the
cause {(q2, r2)} for q3 cannot arise. Once again, the algorithms behave the same in
all circumstances and should be considered equivalent.

The preceding examples show that our definition of equivalence must impose
on the causality relations a more subtle requirement than being identical. The
requirement must capture the intuition that the same queries are produced in any
circumstances that can actually arise.

Remark 6.5. We already mentioned that any appropriate definition of equiva-
lence of algorithms must imply that equivalent algorithms have (in any state) the
same contexts. One might therefore try using this as the definition, i.e., call two
algorithms equivalent if they have the same contexts in all states. Unfortunately,
this simple definition is too weak to capture the intuitive notion of equivalence, as
the following example shows.

Example 6.6. Consider two algorithms that differ only in that, for certain states,
one has the causality relation consisting of

∅ ⊢ q and ∅ ⊢ q′

while the other has

∅ ⊢ q and {(q, r)} ⊢ q′

for all possible replies r to q. These algorithms have the same contexts for such
a state, because in both cases the contexts must answer both q and q′. Yet they
should be inequivalent, because if the environment fails to answer q, then they
behave differently; the first algorithm asks q′ and the second does not.

Remark 6.7. It would be aesthetically pleasing to be able to define equivalence
of algorithms as agreement on everything mentioned in the postulates. As we have
seen, this won’t work as long as the causality relation is among the things mentioned
in the postulates. Why don’t we reformulate the postulates using other primitive
concepts — ones that are invariant under equivalence — rather than causality
relations? The main reason is that causality is naturally present in algorithms, or at
least in the way algorithms are ordinarily described (e.g., programming languages).
For example, in the algorithms

do in parallel

issue q

issue q’

and
issue q

let r=reply(q) in

issue q’

one clearly sees the two causality structures described in the preceding example.
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6.1 Reachability and well-foundedness

In accordance with the preceding discussion, we consider what circumstances can
actually arise in the execution of an algorithm. We work, for the time being, with
a fixed algorithm, a fixed state, and therefore a fixed causality relation which we
denote simply by ⊢. The simplest way to describe any circumstances (as seen by
the algorithm) is as an answer function α telling what replies the environment has
given (so far) to queries. But not every answer function corresponds to possible
circumstances. For example, α might contain replies for queries that can never be
asked, or for queries that can be asked but not when the environment’s answers are
as given by α. A general answer function is better viewed, intuitively, as indicating
the replies that the environment would give if the appropriate queries were asked,
rather then the replies that the environment actually gives to a specific algorithm
in some possible circumstances. This subsection is devoted to extracting from a
general answer function the part that could actually occur and to characterizing
those answer functions that represent possible circumstances.

Remark 6.8. The concepts of reachability and well-foundedness about to be in-
troduced are shown, in Propositions 6.11 and 6.16, to be easily expressible in terms
of Γα

∞. In this connection, some readers may find that, after the discussion of
contexts and Γα in Section 5, it is clear that the part of α that can actually occur
is α ↾Γα

∞. We expect, however, that other readers will not find this fact obvious,
and we therefore provide the following explanation.

Definition 6.9. Let α be an answer function. An α-trace is a finite sequence
〈q1, . . . , qn〉 of potential queries such that each qi is caused by some subfunction of
α ↾{qj : j < i}. A query q is reachable under α if it occurs in some α-trace.

The idea behind this definition is that a trace indicates how a sequence of queries
could be asked by our algorithm, using its causality relation ⊢, when the environ-
ment’s answers are in accordance with α. Thus, a query is reachable under α if
there is a way for the algorithm to produce this query when the environment’s an-
swers are as given by α. Although traces are linearly ordered, the next proposition
will show that a more general arrangement of queries, for example a partial order
or a preorder, will produce the same notion of reachability as long as there is no
loop or infinite regress in the causes.

Remark 6.10. Any initial segment of an α-trace is also an α-trace. Thus, the
definition of reachability would be unchanged if we required the query to occur at
the end of an α-trace.

It would also be unchanged if we required the trace to contain no repetitions of
elements, for deleting the second and later occurrences of any element in an α-trace
produces another α-trace.

If an α-trace contains a query not in Dom(α), then this query cannot contribute
to any later queries; removing such a query leaves an α-trace. Thus, a query q is
reachable under α if it is the last query in some α-trace in which all the earlier
queries are in the domain of α and there are no repetitions. Of course, the final
query q of the trace need not be in Dom(α).
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The following proposition gives two useful equivalent definitions of reachability.
One is similar to that using traces but it does not involve a linear ordering of
queries. The other relates the present discussion to the operator Γα and its least
fixed point Γα

∞, as introduced in our discussion of contexts in Section 5.

Proposition 6.11. Let α be an answer function and q a query. The following
three statements are equivalent.

(1 ) q is reachable under α.

(2 ) There is a set Z of queries, containing q, and there is a function assigning to
each q′ ∈ Z a function ξq′ ⊆ α ↾Z such that ξq′ ⊢ q′ and such that the relation
(of s and q′) “s ∈ Dom(ξq′ )” is well-founded on Z.

(3 ) q ∈ Γα
∞.

Proof First, we assume (1) and prove (2). Let 〈q1, . . . , qn〉 be a trace containing
q and without repetitions. Define Z to be {q1, . . . , qn}, and for each qi ∈ Z let
ξqi

be a cause for qi that is a subfunction of α ↾{qj : j < i}. Then (2) is satisfied;
the relation “s ∈ Dom(ξq′ )” is well-founded because if qj ∈ Dom(ξqi

) then j < i.
We note for future reference that the Z produced here is finite, so the proposition
would continue to hold if we added to (2) the requirement that Z be finite.

Next, we assume (2) and prove (3). Let q, Z, and the ξq′ be as in (2). We show,
by induction with respect to the well-founded relation “s ∈ Dom(ξq′ )”, that every
element of Z is in Γα

∞. Suppose therefore that q′ ∈ Z and that Γα
∞ contains

all elements s of Dom(ξq′ ). Then, by definition of Γα and by the assumption that
ξq′ ⊢ q′, we have that q′ ∈ Γα(Γα

∞) = Γα
∞.

Finally, we assume (3) and prove (1). We show, by induction on n, that every
element of Γα

n is reachable under α. This is vacuous for n = 0 as Γα
0 = ∅. Assume

it holds for n and consider any q ∈ Γα
n+1 = Γα(Γα

n). By definition of Γα, we have
ξ ⊢ q for some ξ ⊆ α ↾Γα

n. Fix such a ξ and, by the induction hypothesis, pick for
each q′ ∈ Dom(ξ) some α-trace containing it. Then the concatenation of all these
traces, followed by q, is easily seen to be an α-trace. �

Remark 6.12. We assumed, in the Interaction Postulate, that causes are finite.
That assumption is used in the proof of the implication from (3) to (1) in the
preceding proposition, for we need to know that we are concatenating only finitely
many traces in order to obtain a trace at the end. If, for the purpose of mathematical
generality (not relevance to actual computation), we allowed infinite causes, then in
order to maintain Proposition 6.11 we would have to allow traces to be transfinite
sequences. Of course, we should then also delete the comment about Z being finite
at the end of the proof that (1) implies (2).

The following easy corollary of Proposition 6.11 is often useful.

Corollary 6.13. A query q is reachable under α if and only if it is caused by
the restriction of α to some set of reachable (under α) queries.

Proof By the proposition, we see that “q is reachable” is equivalent to q ∈ Γα
∞

and, if we also take into account the definition of Γα, “q is caused by the restriction
of α to some set of reachable queries” is equivalent to q ∈ Γα(Γα

∞). But Γα
∞ is a

fixed point of Γα, so these two conditions are equivalent. �
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For the following lemma, recall from Section 5 the notation αn for α ↾ Γα
n. We

shall also write α∞ for α ↾Γα
∞.

Lemma 6.14. If α and β are answer functions whose restrictions to Γα
n are

equal, then Γα
k = Γβ

k for all k ≤ n+ 1, and αk = βk for all k ≤ n.

Proof The second conclusion follows immediately from the first. We prove the
first by induction on n. When n = 0, the result Γα

k = Γβ
k is trivial for k = 0

as both sides are empty, and the result for k = 1 follows exactly as in the general
induction step, so we don’t treat it separately.

Suppose the lemma is true for n − 1, and suppose the hypothesis of the lemma
is satisfied for n. Because Γα

n increases with n, the hypothesis of the lemma also
holds for n− 1, and therefore the first conclusion holds for all k ≤ n. So it remains
only to consider the case of k = n+ 1.

Each of the following statements is equivalent to the next, for any q.

—q ∈ Γβ
n+1 = Γβ(Γβ

n).

—q ∈ Γβ(Γα
n).

—ξ ⊢ q for some ξ ⊆ β ↾Γα
n.

—ξ ⊢ q for some ξ ⊆ α ↾Γα
n.

—q ∈ Γα(Γα
n) = Γα

n+1.

Indeed, the first two statements are equivalent by the induction hypothesis; the
second and third are equivalent by the definition of Γβ ; the third and fourth are
equivalent by the hypothesis of the lemma; and the last two are equivalent by the
definition of Γα. �

The following definition is intended to capture the notion of an answer function
describing the answers actually given by some environment during the execution of
a step of an algorithm with causality relation ⊢ (in the current state).

Definition 6.15. An answer function α is well-founded if Dom(α) ⊆ Γα
∞.

In view of Proposition 6.11, well-foundedness means that α does not contain
answers to any queries that could never be reached under α. Intuitively, α does not
contain hypothetical information about how the environment would reply to queries
that won’t actually occur; it contains only answers to queries that the algorithm
would actually ask, given the answers in α.

Proposition 6.16. For any answer function α and any natural number n, αn

is well-founded.

Proof Apply Lemma 6.14 with β = αn to get the equality in the middle of

Dom(αn) ⊆ Γα
n = Γαn

n ⊆ Γαn

∞.

�

Corollary 6.17. α∞ is well-founded.

Proof α∞ is αn for sufficiently large n. �
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Proposition 6.18. α∞ is the largest well-founded β ⊆ α.

Proof In view of the preceding corollary, we need only consider an arbitrary
well-founded β ⊆ α and prove that β ⊆ α∞, which amounts to showing that
Dom(β) ⊆ Γα

∞.
For any such β we have, from the observation that Γα is monotone with respect

to α, that Γβ
∞ ⊆ Γα

∞. This fact, and the assumption that β is well-founded, so
Dom(β) ⊆ Γβ

∞, immediately give what we need. �

In view of this proposition, it is reasonable to call α∞ the well-founded part of
α.

For well-founded answer functions, the notion of reachability simplifies as follows.

Proposition 6.19. If α is well-founded, then a query is reachable under α if
and only if it is caused by some subfunction of α.

Proof Because α is well-founded, everything in its domain is reachable under it.
Thus, the phrase “some subfunction of α” in the present proposition is equivalent to
the phrase “the restriction of α to some set of reachable queries” in Corollary 6.13.
So the present proposition follows immediately from that corollary. �

6.2 Equivalence of causality relations

There are two plausible ways to approach the definition of equivalence of causality
relations (and thus the definition of equivalence of algorithms) in the light of the
examples at the beginning of this section. One way is to consider arbitrary answer
functions α. Then Examples 6.2, 6.3, and 6.4 show that we must not use the
obvious definition of equivalence, namely that every answer function causes the
same queries under both algorithms. In each of those examples, there is an answer
function that causes different queries under the two algorithms. In Example 6.2,
the misbehaving answer function is {(q, r)}, in Example 6.3 it is {(q1, r

′
1), (q2, r2)},

and in Example 6.4 it is {(q2, r2)}. (In the last of these examples, {(q1, r1), (q2, r2)}
also misbehaves, but this misbehavior could be removed by weakening the proposed
definition of equivalence to say that, for every α, any query caused by a subfunction
of α in either algorithm must also be caused by a (possibly different) subfunction
of α in the other algorithm.)

In each of the three examples, the indicated misbehavior involves an answer
function that cannot actually arise under the algorithm. Instead of considering
what queries are caused by subfunctions of α, we should consider what queries are
caused by subfunctions of α that could actually arise during the execution of the
algorithm. According to Corollary 6.13, this amounts to considering what queries
are reachable under α.

The second way is to confine attention to well-founded answer functions α, those
that can actually arise. In this approach, it is reasonable to require that the same
queries be caused by subfunctions of α. The second approach seems more natural,
but there is a technical complication, namely, that the notion of well-founded seems
to depend on the causality relation. Should we use the answer functions well-
founded for the one causality relation, or the other, or both? It turns out that
the problem disappears, for we shall show that equivalent causality relations have
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the same well-founded answer functions. But the second approach would require
us to prove this and to give the definition of equivalence simultaneously. To avoid
this complication, we adopt the first approach and then prove that the second is
equivalent to it.

Definition 6.20. Two causality relations are equivalent if, for every answer func-
tion α, they make the same queries reachable under α.

Proposition 6.21. The following statements are equivalent for any pair of causal-
ity relations.

(1 ) The two causality relations are equivalent.

(2 ) They have the same well-founded answer functions α, and, for each such α,
the same queries are caused by subfunctions of α.

(3 ) They have the same well-founded answer functions α, and, for each such α,
the same queries are reachable under α.

(4 ) For every answer function that is well-founded for both causality relations, the
same queries are caused by subfunctions of α.

(5 ) For every answer function that is well-founded for both causality relations, the
same queries are reachable under α.

To avoid possible confusion, we emphasize that in clauses (2) and (4), “the same
queries are caused by subfunctions of α” means that any query caused under one of
the causality relations by a subfunction of α is also caused under the other causality
relation by a possibly different subfunction of α.

Proof of Proposition 6.21 We first observe that Proposition 6.19 gives us the
equivalence of (2) and (3) as well as the equivalence of (4) and (5). Also, the
implication from (2) to (4) (or from (3) to (5)) is trivial. So we can complete the
proof by showing that (1) implies (3) and (4) implies (1).

Assuming (1), to prove (3) it suffices to show that the two causality relations give
the same well-founded answer functions; the rest of (3) is included in the definition
of equivalence. So suppose, toward a contradiction, that α is an answer function
that is well-founded for one of our two causality relations, say 1⊢, but not for the
other, 2⊢. We’ll use left superscripts 1 and 2 not only for the two causality relations
but also for the associated Γ operators. So Dom(α) ⊆ 1Γα

∞
but there are some

queries q in Dom(α) that are not in 2Γα
∞

. Among such queries, choose one q that

is in 1Γα
k

for the smallest possible k. Of course k = n+1 for some n (as 1Γα
0

= ∅).

Since q ∈ 1Γα
n+1

= 1Γα(1Γα
n
), we have ξ 1⊢q for some ξ ⊆ α ↾ 1Γα

n
. Now

α ↾ 1Γα
n

is well-founded with respect to 1⊢ by Proposition 6.16. So, by Proposi-
tion 6.19, q is reachable under α ↾ 1Γα

n
with respect to 1⊢ and therefore also with

respect to 2⊢, since (1) is assumed.
By minimality of k, we know that the domain of the function α ↾ 1Γα

n
is included

in 2Γα
∞

, and we have seen that q is reachable, in the sense of 2⊢, under this function.
By Corollary 6.13, q is caused by some subfunction of α ↾ 2Γα

n
, and this means that

q ∈ 2Γα(2Γα
∞

) = 2Γα
∞
.

This contradicts our choice of q, so the proof that (1) implies (3) is complete.
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To prove that (4) implies (1), we consider an arbitrary answer function α and
show, by induction on n, that 1Γα

n
= 2Γα

n
. This will suffice because, for suffi-

ciently large n we get 1Γα
∞

= 1Γα
∞

, and then Proposition 6.11 tells us that the
reachability notions of the two causality relations agree.

For the induction, the base case n = 0 is trivial, as both sides of the desired
equation are empty. So assume the result for n. Thus, αn is the same with respect
to the two causality relations, and it is, by Proposition 6.16, well-founded for both
causality relations. By our assumption (4), the same queries are caused by sub-
functions of αn under the two causality relations. But these queries are exactly the

elements of 1Γα
n+1

and 2Γα
n+1

. �

Corollary 6.22. If two causality relations 1 ⊢ and 2 ⊢ are equivalent, then
for all n 1Γα

n
= 2Γα

n
. In particular, 1Γα

∞
= 2Γα

∞
. Therefore the two causality

relations give the same well-founded answer functions and the same contexts.

Proof The first assertion was proved as part of the proof that (4) implies (1)
in Proposition 6.21. The second follows by taking n sufficiently large. To deduce
the third from the second, note that the definition of well-foundedness and the
characterization of contexts in Lemma 5.7 both use the causality relation only via
Γα

∞. �

With this corollary, we are in a position to define equivalence of algorithms,
because there is no ambiguity in the notion of context.

Definition 6.23. Two algorithms are equivalent if they have

—the same states,

—the same initial states,

—equivalent causality relations in every state,

—failures in exactly the same states and contexts, and,

—for every state X and context α in which they do not fail, the same update set
∆+(X,α).

Remark 6.24. In this definition of equivalence, the parts about the causality re-
lations, the failures, and the update sets are intended to capture the idea that the
two algorithms behave the same way — issue the same queries and perform the
same updates — as long as the environment behaves the same way. The notion of
“the environment behaves the same way” is represented in the definition by the use
of the same answer function α for both algorithms, both in the “update” part of
Definition 6.23 and in Definition 6.20. We regard the environment as adequately
represented by an answer function because we are dealing only with ordinary algo-
rithms, which cannot be influenced by the environment except through the answer
function.

One could raise the following objection to this picture. Although an ordinary al-
gorithm cannot make use of the timing of the replies it receives, there is nothing to
prevent the environment from making use of the timing of queries. It might, for ex-
ample, answer some query q differently depending on whether another query q′ had
been asked earlier. Or the relative order of the queries might influence whether the
environment answers them at all. In such a situation, the environment’s replies to
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the algorithm might be given by different answer functions, depending on the tim-
ing of queries, even though it is really the same environment. Intuitively, equivalent
algorithms should behave the same even in the presence of such a timing-sensitive
environment. Yet our definition of equivalence does not require any agreement
when different answer functions are involved.

The answer to this objection is in two parts, according to the source of the
difference in timing of queries. Let us consider first the case where the algorithms
specify different timings. As a typical example, suppose algorithm A begins by
issuing query q and, after receiving any reply, issues q′, while algorithm B begins
by issuing only q′, postponing q until after it has received an answer to q′. (Recall
here, from the discussion following the Interaction Postulate in Section 5, that an
ordinary algorithm cannot enforce a particular order between two queries except by
making one dependent on receipt of an answer to the other.) The objection involves
an environment whose answers to q and q′ depend on the order in which the queries
are received, and which can therefore produce two different answer functions, say
α and β, for these two algorithms. Nothing in the definition of equivalence requires
the two algorithms to behave the same in the presence of these two different answer
functions.

Yet the definition of equivalence shows, in accordance with intuition, that A and
B are inequivalent. Though it doesn’t require equivalent algorithms to behave the
same when they get different answer functions α and β, it does require them to
behave the same when both get the answer function ∅. And here A and B behave
differently; A issues q and B issues q′.

More complicated examples of this sort can be handled similarly. If two algo-
rithms are intuitively different because they issue their queries in a different order,
then our definition of equivalence will detect this, not by looking at the different
answer functions that may result from the different orderings, but from the single
answer function that preceded the difference — an answer function from which the
two algorithms produce different queries.

The other part of the answer to the objection concerns the situation where the
difference in timing is not specified by the algorithm but is accidental. For example,
if an algorithm begins its step by issuing both q and q′ (caused by ∅), then, in the
actual execution of the algorithm, these two queries might reach the environment in
either order or simultaneously, depending on details of the operating system under
which the algorithm runs, the communication channels through which it sends the
queries, etc. And again these accidents might influence the answers provided by the
environment, so it would seem that such an environment is not adequately modeled
by a single answer function.

We must remember, though, that the details that determine the order in which
the environment receives such a pair of queries are themselves a part of the envi-
ronment, albeit usually a different part from the answerer of queries. Indeed, the
properties of the operating system, the communication channels, etc., are not part
of the algorithm; they are something external that can influence the execution of
the algorithm, and this is precisely what “environment” means.

Thus, if the environment produces different answers because it receives two such
queries in different orders, then it is not really the same environment. The query-
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answering part of the environment may be the same, but the timing-deciding part
of the environment is different. Therefore, it is appropriate not to require equiv-
alent algorithms to behave the same when the timing of their queries is different
for environmental reasons (as opposed to reasons in the algorithms’ own causality
relations). Indeed, requiring the same behavior in such circumstances could make
an algorithm inequivalent to itself.

6.3 Normalized causality relations

In this subsection, we develop a normal form for causality relations. We show how
to transform each causality relation ⊢ into an equivalent one in normal form, ⊢′,
and we show that two causality relations are equivalent if and only if their normal
forms are the same.

Definition 6.25. Given a causality relation ⊢ define its normal form ⊢′ by letting
α ⊢′ q if and only if α is well-founded (with respect to ⊢) and q is reachable under
α (also with respect to ⊢).

The intuition behind this definition is that a cause α for q in the sense of ⊢′

contains complete information about how q comes about under α. That is, α must
contain not only a cause for q (in the sense of ⊢) but also causes for the queries
involved in those causes, causes for the queries involved in those causes, etc., all in
a well-founded arrangement. This is essentially what part (2) of Proposition 6.11
tells us.

Recall also that, by Proposition 6.19, the last part of the definition of α ⊢′ q,
namely that q is reachable under α, can be equivalently stated as: there is some
ξ ⊆ α such that ξ ⊢ q.

Proposition 6.26. Any causality relation ⊢ is equivalent to its normal form.

Proof We verify equivalence in the form (4) of Proposition 6.21. Fix an α that
is well-founded with respect to both ⊢ and ⊢′. If some subfunction of α causes q in
the sense of ⊢, then α itself causes q in the sense of ⊢′. For the converse implication,
suppose ξ ⊆ α and ξ ⊢′ q. Then, by the definition of ⊢′, as reformulated just before
this proposition, there is η ⊆ ξ such that η ⊢ q. Then, as η ⊆ α, the proof is
complete. �

Proposition 6.27. If 1⊢ and 2⊢ are equivalent, then 1⊢′ = 2⊢′.

Proof This is immediate by inspection of the definition of normalization and the
implication from (1) to (3) in Proposition 6.21. �

Combining the two preceding propositions, we find that normalization is an idem-
potent operation on causality relations.

Corollary 6.28. ⊢′′=⊢′.

Proof Apply Proposition 6.27 to the equivalence given by Proposition 6.26. �

We close this section with an easy result that suggests our motivation for intro-
ducing the normalization ⊢′. The idea is that, once we have a context α, enlarging
it cannot lead to new queries. This will be important in the sequel to this paper,
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when we consider the operation of sequential composition of algorithms. In the ex-
ecution of a step of such a composition, say A followed by B, first the environment
must provide a context for A, so that A can complete its step, and then B continues
by asking more queries and getting replies. Things can get a bit confusing if those
replies cause new queries in A, which is supposed to have already finished its step.
The following corollary shows that, if we use a normalized causality relation ⊢′,
then such confusion cannot arise.

Proposition 6.29. Let ⊢ be a causality relation and ⊢′ its normalization. Sup-
pose that α is a context, that α ⊆ β, and that ξ ⊢′ q for some ξ ⊆ β. Then
ξ ⊆ α.

Proof Observe first that the word “context” in the hypothesis is unambiguous,
since ⊢ and ⊢′ have the same contexts, by Proposition 6.26 and Corollary 6.22.
Note also that “well-founded” is unambiguous for the same reason.

Since α is a context, its domain includes Γα
n for all n. Since also α ⊆ β, the

hypothesis of Lemma 6.14 is satisfied, and therefore so is the conclusion of that
lemma, for all n. In particular, β∞ = α∞ = α. Now since ξ ⊢′ q, we know
by definition of ⊢′ that ξ is well-founded. But β∞ is the largest well-founded
subfunction of β, by Proposition 6.18. So ξ ⊆ β∞ = α. �

7. ABSTRACT QUERIES AND QUERIES IN NORMAL FORM

In this section, we address two questions that could arise from our definition of
potential queries as tuples of state elements and labels.

The first question is whether so much generality is needed. Couldn’t we use, for
example, tuples where the first component is a label and the other components are
elements of the state?

The second question goes in the opposite direction. Couldn’t we have queries of
an even more general sort? One can imagine queries whose structure is not a simple
tuple but something more complicated. In fact, Benjamin Rossman has suggested
that the general form of a query could be an arbitrary first-order structure.

We shall show that the answer to both questions is essentially that it doesn’t
matter. The definition we adopted, the restriction advocated in the first question,
and some of the generalizations advocated in the second are all equivalent. Here
equivalence means intuitively that queries in one of these senses can be represented
by queries in another sense without any loss of information. Of course the notion of
algorithm would have to be defined, in each case, to use the corresponding notion
of query in the postulates.

7.1 Query systems

To establish the equivalence of various notions of query, we begin by defining a
general notion of rigid query system, intended to be broad enough to encompass
most of the possibilities envisioned by the second question. Then we shall show how
to replace the queries of any such system by ones of the restricted form suggested in
the first question. Since our original definition of potential queries lies between the
two modifications, the equivalence we establish between the latter also encompasses
the former. We shall also discuss what would be needed to accommodate non-rigid
query systems.
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The central idea of a query system is that there should be, for each state X , a set
Q(X) of potential queries in X . An obvious requirement for such an assignment
Q is that it should respect isomorphisms. That is, if i : X ∼= Y is an isomorphism
between two states, then there should be an associated bijection from Q(X) to
Q(Y ). Furthermore, these bijections should be coherent in the sense that if we also
have an isomorphism j : Y ∼= Z, then transporting queries fromX to Z via Y should
be the same as transporting them directly by means of the composite isomorphism
j ◦ i. All of this, plus the trivial requirement that the bijection associated to the
identity isomorphism X ∼= X should be the identity bijection of Q(X), can be
expressed succinctly by saying that we have a functor Q from the category of states
and isomorphisms to the category of sets.

Another aspect of query systems is that each potential query q for X should
directly involve only finitely many elements of X ; we call the set of these elements
the query’s support and denote it by supp(q). The crucial property of supports,
apart from being preserved, like everything else, by isomorphisms, is that the result
of applying an isomorphism i : X ∼= Y to some q ∈ Q(X) should not depend on all
of i but only on its restriction to supp(q).

Up to this point, our description of query systems has imposed no constraints
at all on the queries associated to non-isomorphic states. The potential queries
could look entirely different for each isomorphism class of states. This situation is
unsatisfactory both intuitively and technically. At the intuitive level, we expect that
a query system will associate queries to states in a uniform (or at least somewhat
uniform) manner, not totally differently for each isomorphism class. Technically,
to formulate and use the Bounded Work Postulate, we need to be able to compare
queries for non-isomorphic states, for example in saying that the same α is an answer
function for two such states. Notice that the queries introduced in Section 5 were
very uniform, in that whether a tuple is a query for X depends only on whether
its non-label components are elements of X ; the rest of the structure of X played
no role here. In general, the rest of the structure might play a role, but a limited
one. For example, we might want tuples of a certain form to be queries just in case
a certain component belongs to a certain subuniverse of the state. Thus, the same
tuple may serve as a query in one state and not in another, even if the relevant
elements are present in both states but don’t belong to the same subuniverse in
both states. Our definition of query systems will allow for this sort of dependence
on the state, but only a finite amount of information about the state should be
relevant — not the whole isomorphism type of the state.

To describe the finite amount of information that is relevant, we use a finite set of
terms, rather similarly to the use of bounded exploration witnesses in the Bounded
Work Postulate. We begin by defining the necessary concepts relating to such a set
of terms and the associated partial agreement between states; afterward, we give
the formal definition of a query system and of rigidity.

Convention 7.1. Fix, until further notice, a vocabulary Υ and a finite set U of
Υ-terms. The notions of partial isomorphisms, query-systems, etc., that we define
below should all be regarded as relative to Υ and U .

Although we are ultimately interested only in the potential queries associated
to states, our definition of query systems will require that they associate sets of
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potential queries to all Υ-structures. The reason for this is to reduce the dependence
of the notion of query system on any particular algorithm. With our definitions,
the only information we need about an algorithm, in order to begin talking about
its potential queries, is its vocabulary Υ.

Definition 7.2. A partial isomorphism from one Υ-structure X to another X ′,
written i : X ⇀ X ′, is a bijection i between some A ⊆ X and some A′ ⊆ X ′ with
the following property. For any two terms t1, t2 ∈ U and any assignment v of values
in A to their variables, t1 and t2 have the same value in X using v if and only if
they have the same value in X ′ using i ◦ v.

Remark 7.3. It appears reasonable to strengthen the condition for a partial iso-
morphism by requiring the property in the last sentence also when different assign-
ments, say v1 and v2 are used for the two terms t1 and t2. This strengthening can,
however, be subsumed by our formulation if we just enlarge U so that, whenever it
contains t1 and t2, it also contains copies of them that use disjoint sets of variables.
In fact, we don’t even need to enlarge U ; just modify all the terms in it so that no
two of them have a common variable.

Another equivalent reformulation of the definition is to start with a finite set U ′

of Boolean terms and to require that, for each t ∈ U ′ and each assignment v of
values in A to its variables, t has value true in X using v if and only if it has
value true in X ′ using i ◦ v. To go from our definition of this new one, take U ′ to
consist of all equations between terms from U . To go from the new definition to
the original one, take U to consist of U ′ plus true.

A rough way to express our condition is that, if you try to extend i from A to
more elements of X by the rule i(fX(~a)) = fX′(i(~a)), then the resulting extension
is, at least up to and including terms from U , well-defined and one-to-one.

We remark that the empty function is a partial isomorphism from X to X ′ if and
only if the closed terms in U satisfy the same equations in both structures. Notice
also that any restriction of a partial isomorphism to a subset of its domain is again
a partial isomorphism of the same structures.

The following definition formalizes our earlier, informal discussion. For brevity,
we write simply “query” rather than “potential query”.

Definition 7.4. A query system Q (with respect to Υ and U) consists of

—for each Υ-structure X , a set Q(X) of queries for X ,

—for each structure X and each q ∈ Q(X), a finite subset suppX(q) of X (written
just supp(q) when X is understood), called the support of q,

—for each partial isomorphism i : X ⇀ X ′ whose domain includes suppX(q), a
query i∗(q) ∈ Q(X ′)

subject to the following requirements.

—If a partial isomorphism i : X ⇀ X is the identity map of its domain, then i∗ is
the identity map of its domain also.

—If i : X ⇀ X ′ and j : X ′ ⇀ X ′′, then (j ◦ i)∗ = j∗ ◦ i∗.

—If i is a partial isomorphism whose domain includes the support of the query q,
then supp(i∗(q)) = i[supp(q)].
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—If i and j are two partial isomorphismsX ⇀ X ′, if q is a query forX with support
included in Dom(i)∩Dom(j), and if i ↾ supp(q) = j ↾ supp(q), then i∗(q) = j∗(q).

Remark 7.5. This definition admits an elegant reformulation in terms of the
category S of sets and a category P whose objects are pairs (X,A) where X is an
Υ-structure and A is a subset of (the base set of)X . A morphism (X,A) → (X ′, A′)
in P is a partial isomorphism i : X ⇀ X ′ with Dom(i) = A and Range(i) ⊆ A′ (so
i is a function A→ A′).

A query system gives rise to a functor Q : P → S given on objects by

Q(X,A) = {q ∈ Q : supp(q) ⊆ A}

and on morphisms by Q(i) = i∗. It also gives rise to a natural transformation
supp : Q → Pfin ◦ D, where Pfin : S → S is the covariant finite power set functor
and D : P → S is the functor sending (X,A) 7→ A and i 7→ i.

The functor Q and the natural transformation supp satisfy the following two
requirements. First, if i : (X,A) → (X,A′) is an inclusion (note that X is the same
and A ⊆ A′) then Q(i) is also an inclusion. Second, if q ∈ Q(X,A) then q is also
in Q(X, supp(q)) (which is a subset of Q(X,A) by the first requirement).

One can verify that any functor Q and natural transformation supp satisfying
these requirements arise from a query system. So our definition of query system
could be replaced with this functorial one.

Remark 7.6. Let i : X ⇀ X ′ be a partial isomorphism, and assume for simplicity
that the underlying sets of X and X ′ are disjoint. (Otherwise, replace X by an
isomorphic copy.) Consider the structure Y obtained as follows. For each element
a ∈ X that is the value in X of a term t ∈ U for some assignment v of values in
Dom(i) to its variables, replace a by the value a′ in X ′ of the same term t with
the assignment i ◦ v of values to its variables. This replacement is well-defined and
one-to-one, by the definition of partial isomorphism. The structure Y obtained in
this way is isomorphic to X , via the map i′ that, in the notation above, sends each a
to the corresponding a′ and is the identity map on the rest of X . Furthermore, the
identity function on Range(i) is easily seen to be a partial isomorphism id : Y ⇀ X ′

such that id ◦ i′ = i. Thus, every partial isomorphism is obtainable by composing
a (total) isomorphism and a partial isomorphism that is an identity map.

One could take advantage of this fact to avoid talking about general partial
isomorphisms, using instead only the two special cases of isomorphisms and partial
isomorphisms that are identity maps. The definition of query systems could be
formulated just in terms of these two special cases.

7.2 Rigid query systems are simple

Not all query systems can be reduced to the standard form introduced in Section 5.
To see where the difficulty occurs, consider a system where a query for X is simply
an unordered set of two elements from X . The support of such a pair is the
pair itself, and the action of partial isomorphisms is the obvious one, applying the
isomorphism to both elements of the pair. To represent these queries by tuples, we
would have to choose an ordering for the two elements of each pair, and in general
there is no isomorphism-invariant way to do this.
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There are at least three ways around the problem. One is to assume that our
structures include a background, in the sense of [Blass and Gurevich 2000], ade-
quate to form arbitrary subsets of a structure. Then a query, in the tuple sense
of Section 5, could have a two-element set as its only non-label component, rather
than having the two elements of the pair as two components.

A second approach, to which we devote this subsection, is to impose an additional
requirement on query systems. This requirement, which we call rigidity, will exclude
the troublesome examples.

Finally, a third approach, about which we shall comment in the next subsection,
generalizes the tuple approach from Section 5 to allow queries structured in a some-
what more general way than just tuples. In order for this generalization to cohere
with the ASM model, external functions must also allow arguments structured in
a more general way than mere tuples. Such a generalization of the usual argument
structures was introduced, though for predicates rather than functions, in [Blass
and Gurevich 2003a, Section 3], under the name of thesauri.

We begin by defining rigidity. It is the converse of the last requirement in the
definition of query systems.

Definition 7.7. A query system is rigid if, whenever i and j are partial isomor-
phisms X ⇀ X ′, q is a query for X , supp(q) ⊆ Dom(i)∩Dom(j), and i∗(q) = j∗(q),
then i ↾ supp(q) = j ↾ supp(q).

The concept of rigidity may be clarified by a non-example arising from the dis-
cussion above. If queries are unordered pairs of elements of the state, with each
pair serving as its own support, then a permutation that interchanges the two ele-
ments of a pair is a counterexample to rigidity. It maps the pair to itself, but its
restriction to the pair is not the identity. In general, the idea behind rigidity is to
prohibit such non-trivial automorphisms of the structure involved in a query.

Our next goal is to show that every rigid query system is equivalent to one where
queries have the very restricted form suggested in the first question at the beginning
of this section. We first define these restricted systems and the (natural) notion of
equivalence.

Definition 7.8. A query system (for Υ and U) is simple if there is a set Λ of
labels such that:

—Each query for a structure X is a tuple whose first component is an element of
Λ and whose other components are elements of X .

—The support of a query is the set of all its components but the first.

—Partial isomorphisms act on queries by acting on all components but the first.

Remark 7.9. The definition does not require that every tuple consisting of a label
followed by elements of X be a query for X . There might be some restrictions, such
as that certain components come from certain subuniverses of X or that certain
components be distinct. Simple query systems of this generality are needed in order
to match arbitrary rigid query systems.

However, any simple query system can be enlarged to one in which all tuples
of the indicated form are queries. Any algorithm based on the given simple query
system can equally well be based on the enlarged one. The extra queries added
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by the enlargement would never be caused by any answer function and thus would
never be involved in a context and would never be relevant to a computation.

Observe that all simple query systems are rigid.

Definition 7.10. Two query systems Q and Q′ are equivalent if there is, for each
structure X , a bijection eX : Q(X) → Q′(X) such that, for all q ∈ Q(X),

—supp(eX(q)) = supp(q) and

—i∗Q′(eX(q)) = eX′(i∗Q(q)) whenever i : X ⇀ X ′ is a partial isomorphism whose
domain includes supp(q).

(In the second of these requirements, the extra subscript Q or Q′ on i∗ indicates
which query system’s i∗ is intended.) When no confusion can result, we may write
simply e instead of eX .

Remark 7.11. From the category theoretic point of view outlined in Remark 7.5,
the definition of equivalence of query systems just says that e is a natural isomor-
phism between the functors Q and Q′ and that e commutes with supp.

It follows immediately from the definition that equivalence of query systems is
an equivalence relation.

Proposition 7.12. Every rigid query system is equivalent to a simple one.

Proof Let Q be an arbitrary query system. To construct an equivalent simple
query system, our first task is to define an appropriate set Λ of labels. (The
intuition behind the rather technical construction of Λ is indicated in Remark 7.20
below.) We first form the collection T of all triples 〈X, q,~a〉 where X is a structure,
q ∈ Q(X), and ~a is a list, without repetitions, of all the elements of supp(q).

Definition 7.13. For 〈X, q,~a〉 and 〈X ′, q′,~a′〉 in T , we define 〈X, q,~a〉 ∼ 〈X ′, q′,~a′〉
to mean that there is a partial isomorphism i : X ⇀ X ′ such that supp(q) ⊆
Dom(i), i∗(q) = q′, and ~a′ is obtained by applying i componentwise to ~a.

Obviously 〈X, q,~a〉 ∼ 〈X ′, q′,~a′〉 implies that ~a and ~a′ have the same length.

Lemma 7.14. This ∼ is an equivalence relation on T .

Proof Reflexivity, symmetry, and transitivity follow from the facts that identity
maps, inverses of partial isomorphisms, and composites of partial isomorphisms are
again partial isomorphisms. For symmetry, notice also that the equation (i−1)∗ =
(i∗)

−1 follows from the first two requirements in the definition of query system
(functoriality). �

Lemma 7.15. If 〈X, q,~a〉 ∼ 〈X, q,~a′〉 (with the same X and q) then 〈X, q,~a〉 =
〈X, q,~a′〉.

Proof By definition of ∼, there must be a partial isomorphism i : X ⇀ X that
sends ~a to ~a′ componentwise and satisfies i∗(q) = q. Rigidity of Q then requires
that i fixes supp(q) componentwise. But, by definition of T , all components of ~a
are in supp(q). So ~a = ~a′. �

ACM Transactions on Computational Logic, Vol. V, No. N, June 2004.



Ordinary Interactive Small-Step Algorithms, I · 47

The permutations of an element 〈X, q,~a〉 of T are the elements obtainable from
it by permuting the components of ~a while leaving X and q unchanged. It is
almost true that the permutations of 〈X, q,~a〉 constitute its orbit under the action
of the symmetric group on the ~a part; the only thing wrong is that the meaning of
“the symmetric group” varies with 〈X, q,~a〉. Different 〈X, q,~a〉’s have ~a of different
lengths, so different symmetric groups have to act. It is trivial to check that, if
〈X, q,~a〉 ∼ 〈X ′, q′,~a′〉, then each permutation of 〈X, q,~a〉 is ∼ to the corresponding
permutation of 〈X ′, q′,~a′〉. Thus, it makes sense to speak of one equivalence class
in T /∼ being a permutation of another.

Definition 7.16. The set Λ of labels is defined as a subset of T /∼ consisting of
one representative from each class of members that are permutations of each other.
Equivalently, it is a subset of T /∼ that is maximal with the property of containing
no two elements that are permutations of each other.

Readers appalled by the possible size of this Λ are asked to wait until after the
proof of the proposition is finished; Remark 7.18 will address this size issue.

Using Λ, we are in a position to define the simple query system Q′ that will be
equivalent to Q. In fact, the definition of simple query systems leaves us little choice
about the definition. We can and will choose which tuples of the form 〈λ,~a〉 with
λ ∈ Λ and all components of ~a in X should be queries for X . The other ingredients
of the query system, i.e., the support function and the bijections induced by partial
isomorphisms, are then determined by the definition of simple.

Definition 7.17. Q′ is the simple query system with label set Λ defined by
putting 〈λ,~a〉 into Q′(X), for a given X , if and only if λ has an element of the

form 〈X, q,~b〉 where X is the given structure, ~b is a permutation of ~a, and the func-

tion i sending the components of ~b to those of ~a, in order, is a partial isomorphism
X ⇀ X .

Recall that elements of Λ ⊆ T /∼ are equivalence classes of elements of T , so to

say, as we did in this definition, that λ has an element of the form 〈X, q,~b〉 makes

good sense. Recall also that, according to the definition of T , we know that ~b is a
listing without repetitions of the members of supp(q); therefore so is ~a since it is

just a permutation of ~b.
For the sake of brevity, we shall write i(~b) = ~a or i : ~b 7→ ~a to mean that a is the

result of applying i componentwise to ~b. So the last part of the definition of Q′(X)

says that the function defined by i : ~b 7→ ~a is a partial isomorphism.
We repeat that, as required by the definition of simple, the query system Q′ gives

each of its queries 〈λ,~a〉 the support consisting of the elements of ~a, and that if i
is a partial isomorphism then i∗ acts on queries by applying i to all components
except the initial λ. It is easy to check that Q′ is a query system and therefore a
simple one.

We next define the functions eX that will witness that Q′ is equivalent to Q. Let
〈λ,~a〉 ∈ Q′(X), so, according to the definition of Q′, we have some query q ∈ Q(X)

and some listing ~b of supp(q) such that λ is the ∼-class of 〈X, q,~b〉. Furthermore,

~a is a permutation of ~b and thus also lists supp(q) without repetitions. And finally,

we have a partial isomorphism i : X ⇀ X that sends ~b to ~a.
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We define eX(〈λ,~a〉) to be i∗(q). Since the domain of i consists of all the com-

ponents of ~b and these are all the members of supp(q), i∗(q) is well-defined. But
to know that eX(〈λ,~a〉) is well-defined, we must show that it is independent of the
choices made in its definition.

Suppose, therefore, that for the same X and 〈λ,~a〉, we had another 〈X, q′,~b′〉 ∈ λ,

where ~b′ is also a permutation of ~a, and where i′ : ~b′ 7→ ~a is a partial isomorphism.
We must show that i∗(q) = i′∗(q

′), i.e., that we get the same value for eX(〈λ,~a〉) as
before.

Since both 〈X, q,~b〉 and 〈X, q′,~b′〉 belong to the ∼-class λ, the definition of ∼

gives us a partial isomorphism j : X ⇀ X such that j : ~b′ 7→ ~b and j∗(q
′) = q.

Then i ◦ j = i′, because i ◦ j sends ~b′ first to ~b and then to ~a, so it agrees with i′.
Therefore, i′∗(q

′) = i∗(j∗(q
′)) = i∗(q), as required. This completes the proof that

eX is well-defined.

Next, we show that it is surjective. Consider any q ∈ Q(X), and list its support,
without repetitions, as ~c. Thus, 〈X, q,~c〉 ∈ T . Its equivalence class in T /∼ might
not be in Λ, but it can be transformed to an element λ ∈ Λ by suitably permuting
the components of ~c. Let ~a be this permutation of ~c. Then 〈λ,~a〉 ∈ Q′(X), and the
definition of e immediately gives (with an identity map as i) that eX(〈λ,~a〉) = q.
Since q was arbitrary, this shows that eX is surjective.

Before showing that eX is one-to-one, we observe that it respects supports, as
required in the definition of equivalence. Indeed, using the notation from the defi-
nition of eX we have that the support of eX(〈λ,~a〉) = i∗(q) is i[supp(q)] because Q

is a query system. This support is listed by ~a, because ~b lists supp(q) and i : ~b 7→ ~a.
But the set listed by ~a is, by definition, the support (in the sense of Q′) of 〈λ,~a〉.
Thus, eX respects supports.

Now we are ready to prove that eX is one-to-one. Suppose we have two elements
〈λ,~a〉 and 〈λ′,~a′〉 in Q′(X), both mapped by eX to the same query q0 ∈ Q(X). By
definition of Q′ and eX , we have queries q, q′ ∈ Q(X) and listings of their respective

supports ~b and ~b′ such that 〈X, q,~b〉 ∈ λ, 〈X, q′,~b′〉 ∈ λ′, and we have partial

isomorphisms i, i′ : X ⇀ X such that i : ~b 7→ ~a, i′ : ~b′ 7→ ~a′, and i∗(q) = i′∗(q
′) = q0.

Because eX respects supports, we know that both ~a and ~a′ list the support of q0
without repetitions. So they differ by a permutation of the coordinates; let n be
the common length of ~a, ~a′, ~b and ~b′, and let π be the permutation of {1, 2, . . . n}
that sends ~a to ~a′. It is convenient to use the notation ~a′ = ~a ◦ π, which is
strictly correct if we view a list of length n as a function on {1, 2, . . . n}. The

partial isomorphism i−1 ◦ i′ sends ~b′ first via i′ to ~a′ = ~a ◦ π and then via i−1

to ~b ◦ π. The induced bijection on Q(X) sends q′ first to q0 and then to q. So

i−1 ◦ i′ witnesses that 〈X, q′,~b′〉 ∼ 〈X, q,~b ◦ π〉. Thus, the ∼-class λ′ of 〈X, q′,~b′〉

differs from the ∼-class λ of 〈X, q,~b〉 by a permutation. But both are in Λ, which
contains only one representative from each family of permutation-related ∼-classes.
Therefore λ = λ′ and 〈X, q,~b ◦ π〉 ∼ 〈X, q,~b〉. By Lemma 7.15, the latter implies

〈X, q,~b ◦ π〉 = 〈X, q,~b〉, i.e, π is the identity permutation. In view of the definition
of π, this means ~a = ~a′. This completes the proof that 〈λ,~a〉 = 〈λ′,~a′〉 and so eX

is one-to-one.

Finally, we must show that e commutes with partial isomorphisms. So suppose
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〈λ,~a〉 ∈ Q′(X) and j : X ⇀ Y is a partial isomorphism whose domain includes
the support (in the sense of Q′) of 〈λ,~a〉, namely the set listed by ~a. Using again

the notation of the definition of eX , we have that λ contains 〈X, q,~b〉 with ~b a

permutation of ~a, and we have a partial isomorphism i : X ⇀ X with i : ~b 7→ ~a and
i∗(q) = eX(〈λ,~a〉). Notice that, since ~b is a permutation of ~a, j is defined on it,

and so j witnesses that 〈X, q,~b〉 ∼ 〈Y, j∗(q), j(~b)〉. So 〈Y, j∗(q), j(~b)〉 ∈ λ, j(~a) is a

permutation of j(~b), and j ◦ i ◦ j−1 is a partial isomorphism j(~b) 7→ j(~a). Therefore

eX(j∗(〈λ,~a〉)) = eX(〈λ, j(~a)〉) = (j ◦ i ◦ j−1)∗(j∗(q)) = j∗(i∗(q)) = j∗(eX(〈λ,~a〉)).

This completes the proof that e gives an equivalence between the query systems Q′

and Q. �

Remark 7.18. The simple query system Q′ constructed in the preceding proof
seems to use a huge number of labels, since arbitrary Υ-structures can occur as
the first components of members of T . But the situation is not so bad as it seems;
although T can be huge, passing to ∼-classes reduces it considerably. The reason
is that, instead of considering arbitrary states X and lists of elements ~a from X , it
suffices to choose just enough such pairs so that every pair is related to a chosen
one by a partial isomorphism. Then every 〈X, q,~a〉 will be ∼ to one with (X,~a)
among the chosen pairs, because the partial isomorphisms can be used to obtain
the appropriate q’s. Furthermore, getting enough pairs (X,~a) in this sense just
means getting enough to realize every possible pattern of equations and inequations
between terms from U with values from ~a for the variables. As U is finite, we need
only finitely many pairs (X,~a) for any fixed length of ~a. So the only ways to get
infinitely many labels in our Λ are to have infinitely many lengths of ~a’s or to have
infinitely many q’s for a single (X,~a). For this to happen, Q would have to have,
in some state, either infinitely many queries with the same support or queries with
arbitrarily large supports. In such a case, of course, an infinite Λ is unavoidable in
any equivalent simple query system.

The query systems used in Section 5 have queries with arbitrarily large supports,
but, by the Bounded Work Postulate, any particular algorithm will use queries with
lengths only up to a certain bounded size. Thus, for any particular algorithm, we
could truncate the query system, deleting all queries whose lengths are too large to
be relevant for this algorithm. Then the supports of queries are of bounded size, and
for each support there are only a finite number of queries. The new query system,
still adequate for the given algorithm, is equivalent, by the argument above, to a
simple query system with only finitely many labels. More generally, the intuition
underlying the Bounded Work Postulate shows that, even with more general rigid
query systems than those in Section 5, any particular algorithm should have a bound
for the sizes of supports of queries, since building queries with large supports takes
large amounts of work. Furthermore, any particular algorithm should use only
finitely many queries with a given support in a specific state, for these queries
would have to be distinguished in the text of the algorithm. The argument above
shows that, for such an algorithm, a simple query system with finitely many labels
is adequate.

Remark 7.19. For the sake of mathematical completeness, we mention that most
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of this section, including the proof of Proposition 7.12, would work without the
requirement, in Convention 7.1, that U be finite. The only place this requirement
was used was in getting the label set Λ to be finite in Remark 7.18.

Remark 7.20. The intuition behind the definition of the labels in the proof of
Proposition 7.12 is that, if q ∈ Q(X), then the label occurring in the corresponding
query in Q′(X) should contain all information about q except for the particular
elements in its support. The label should completely describe q up to partial iso-
morphisms of the support. Borrowing terminology used in [Blass, Gurevich, and
Shelah 1999], we can say that the label is intended to capture the form of q, while
the listing of the support captures its matter.

7.3 Avoiding rigidity

The definition of “query system” is intended to summarize what one would expect
to be true for any reasonable notion of query. Rigidity, on the other hand, seems
rather an ad hoc assumption, needed to make the proof of Proposition 7.12 work.
It is not clear why one should not permit, say, an unordered pair of elements of X
to serve as a query in X . So it is worthwhile to analyze query systems that are
not necessarily rigid. They cannot be equivalent to simple query systems, since the
latter are rigid. But are they equivalent to some variant of simple query systems?

Let us begin by looking at how rigidity was used in the proof of Proposition 7.12.
It was used only in the proof of Lemma 7.15, which in turn was used in the proof
that eX is one-to-one. In the absence of rigidity, the proof of Lemma 7.15 breaks
down; we can no longer infer that ~a = ~a′. But we can still infer that ~a and ~a′

are permutations of each other. Indeed, they are, by definition of T , one-to-one
listings of supp(q). And the permutation by which they differ might not be entirely
arbitrary, because i : ~a 7→ ~a′ has to be a partial isomorphism and i∗ has to fix
q. This suggests that we consider the symmetry group or stabilizer of 〈X, q,~a〉,
namely the set of permutations π of {1, 2, . . . , n} where n is the length of ~a and
where i : ~a 7→ ~a ◦ π is a partial isomorphism and satisfies i∗(q) = q. An equivalent
way to express this condition on π is that 〈X, q,~a〉 ∼ 〈X, q,~a ◦ π〉. The name
“symmetry group” is justified, because it is easy to check that this is a group of
permutations.

In the proof of Proposition 7.12, the argument showing that eX is one-to-one
breaks down, in the absence of rigidity, at the place where Lemma 7.15 was invoked.
As a result, if eX(〈λ,~a〉) = eX(〈λ′,~a′〉), we can still conclude λ = λ′, but instead of
~a = ~a′, we obtain only that ~a′ is obtainable from ~a by applying a permutation in
the stabilizer of 〈X, q,~b〉.

This suggests that we could repair the difficulty caused by the lack of rigidity by
taking the queries of Q′ to be pairs where the first component is a label (as before)
but the rest is not merely a list ~a of elements but rather an orbit of such lists under
the appropriate permutation group. In other words, in the situation described in
the preceding paragraph, we would have identified 〈λ,~a〉 with 〈λ,~a′〉, and so eX

would once again be one-to-one.
This idea works, but a few technicalities need to be checked; these are the next

two lemmas.

Lemma 7.21. If two elements of T are related by ∼ then they have the same
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stabilizer.

Proof Suppose 〈X, q,~b〉 ∼ 〈X ′, q′,~b′〉. Then the same partial isomorphism that

witnesses this instance of ∼ also witnesses 〈X, q,~b ◦ π〉 ∼ 〈X ′, q′,~b′ ◦ π〉 for any

permutation π of the appropriate {1, 2, . . . , n}. If π is in the stabilizer of 〈X, q,~b〉,

so that 〈X, q,~b〉 ∼ 〈X, q,~b◦π〉, then this instance of ∼ and the two in the preceding

sentence give, by symmetry and transitivity of ∼, that 〈X ′, q′,~b′〉 ∼ 〈X ′, q′,~b′ ◦ π〉.

Thus π is also in the stabilizer of 〈X ′, q′,~b′〉. �

In view of this lemma, it makes sense to speak of the stabilizer of an equivalence
class in T /∼, meaning the stabilizer of any of its members. In particular, we can
speak of the stabilizer of a label λ ∈ Λ; it will be convenient to introduce the
following notation for it.

Definition 7.22. For any label λ ∈ Λ, say the ∼-class of 〈X, q,~b〉 where ~b has
length n, the stabilizer of λ is the group Sλ consisting of those permutations π of
{1, 2, . . . , n} such that 〈X, q,~b〉 ∼ 〈X, q,~b ◦ π〉.

The preceding lemma shows that this definition does not depend on the choice
of the representative 〈X, q,~b〉 from λ.

As indicated earlier, we want to modify the definition of Q′ in the proof of
Proposition 7.12 by identifying 〈λ,~a〉 with 〈λ,~a ◦ π〉 where they differ only by a
permutation π ∈ Sλ of their non-λ components. To avoid confusion, it will be
useful to know that anything identified with a query in this way is itself a query in
the sense of (the original) Q′.

Lemma 7.23. If 〈λ,~a〉 ∈ Q′(X) and π ∈ Sλ, then 〈λ,~a ◦ π〉 ∈ Q′(X) .

Proof The hypothesis that 〈λ,~a〉 ∈ Q′(X) means that λ contains some 〈X, q,~b〉

where ~b is a permutation of ~a and i : ~b 7→ ~a is a partial isomorphism. Clearly,
then ~b is also a permutation of ~a ◦ π, so all that remains to be checked is that
~b 7→ ~a ◦ π is a partial isomorphism. But we know, since π ∈ Sλ, that there is a
partial isomorphism j : ~b 7→ ~b ◦ π. Since i : ~b 7→ ~a, we also have i : ~b ◦ π 7→ ~a ◦ π.
Therefore i ◦ j is the desired partial isomorphism ~b 7→ ~a ◦ π. �

Definition 7.24. Define Q′′(X) to be the quotient of Q′(X) obtained by iden-
tifying 〈λ,~a〉 with 〈λ,~a ◦ π〉 whenever π ∈ Sλ. We write [λ,~a] for the equivalence
class of 〈λ,~a〉. All elements of [λ,~a] have the same support in the sense of Q′,
namely the set listed by ~a; we define this set to be the support of [λ,~a] in the
sense of Q′′. If i : X ⇀ Y is a partial isomorphism whose domain includes this
support, then all elements of [λ,~a] are mapped by i∗Q′ into the same equivalence
class [λ, i(~a)] ∈ Q′′(Y ); we define this class to be i∗Q′′([λ,~a]).

It is easy to check that this defines a query system Q′′.

Proposition 7.25. For any query system Q, let Q′ be defined as in the proof
of Proposition 7.12 and let Q′′ be defined as above. Then Q′′ is equivalent to Q.

Proof The proof is the same as the proof of Proposition 7.12 except for two points.
The first is that the functions eX defining the equivalence need to be defined on
Q′′(X), where previously they were defined on Q′(X). We define eX([λ,~a]) to be
what was previously called eX(〈λ,~a〉).
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Lemma 7.26. This new eX is well-defined

Proof We must check that, if π ∈ Sλ, then the old eX sends 〈λ,~a〉 and 〈λ,~a ◦ π〉
to the same query in Q(X). Using the notation from the proof of the preceding
lemma, we have, by the definition of the old eX ,

eX(〈λ,~a ◦ π〉) = (i ◦ j)∗(q) = i∗(j∗(q)) = i∗(q) = eX(〈λ,~a〉),

where the equation j∗(q) = q, used to obtain the third equality, comes from the
definition of Sλ. �

The only other change from the proof of Proposition 7.12 is that, in proving that
eX is one-to-one, instead of invoking Lemma 7.15 to infer ~a = ~a′, we instead use,
as explained above, the fact that ~a and ~a′ differ by a permutation from Sλ. Thus,
although we cannot obtain 〈λ,~a〉 = 〈λ,~a′〉 in Q′(X), we do obtain [λ,~a] = [λ,~a′] in
Q′′(X). �

Unlike the Q′ of Proposition 7.12, the Q′′ of Proposition 7.25 is not a simple
query system, because the queries are not tuples of a label and elements of the
state but rather equivalence classes of such tuples under certain permutations of
the state elements. The price we pay for starting with a non-rigid Q is the need for
equivalence classes in a tuple-based equivalent system. By the way, since equivalent
elements of Q′(X) have the same label as their first component, we could have
defined Q′′(X) by leaving the labels alone and taking equivalence classes only of
the lists of elements of X . That is, we could write 〈λ, [~a]〉 instead of [λ,~a], where
of course [~a] represents the orbit of ~a under the permutation group Sλ.

This generalized notion of queries easily covers the example mentioned earlier,
where a query is given by an unordered pair of elements of the state. Such a
pair amounts to an equivalence class of ordered pairs under the group consisting
of both permutations of the two positions. More generally, an equivalence class of
n-tuples under the full symmetric group of permutations of {1, 2, . . . , n} amounts
to an n-element multiset; by starting with n-tuples of distinct elements we get n-
element sets. Other choices of subgroups of the symmetric group give other sorts of
structures, for example cyclically (rather than linearly) ordered tuples, or ordered
tuples of unordered sets, or unordered sets of ordered tuples.

7.4 Thesauri

If we were to generalize Section 5 by allowing queries that involve permutation
orbits of tuples of state elements, then in order to simulate such algorithms with
ASMs, as we intend to do in a sequel to this paper, we would have to make a similar
generalization for the external functions. That is, an n-ary external function could
take as its argument not an n-tuple of elements but rather an orbit of such n-tuples
with respect to a certain group of permutations of the positions in the n-tuple.
Equivalently, we could regard the function as still being defined on n-tuples but
required to be invariant under the given group of permutations of the argument
places. A familiar example of such a function is ordinary addition of numbers
which, by commutativity, can be viewed as acting not on ordered pairs of numbers
but on orbits of such pairs under the symmetric group of two permutations. That
is, addition can be viewed as an operation on two-element multisets.
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If external functions are generalized in this way, then it would seem natural to
allow the same generalization for the state’s own functions, the interpretations of
the symbols from Υ. This would mean, for example, that, if a dynamic function
is regarded as acting on tuples in an invariant manner, then when it is updated
at one tuple of arguments, it is automatically updated at all the equivalent tuples
with respect to the given permutation group.

A rather similar situation arose in [Blass and Gurevich 2003a], though in con-
nection with relations rather than functions. We introduced there a notion of
thesaurus, which was essentially a relational vocabulary equipped with a specifica-
tion of the desired invariance group for each relational symbol. Actually, for the
purposes of [Blass and Gurevich 2003a], we also generalized from “relational”, i.e.,
two-valued, to many values, with the number of values being specified for each re-
lation symbol; we had the permutation group act also on the set of “truth” values;
and we included a probability distribution on these truth values in order to define
random structures.

Our present situation involves functional rather than relational vocabularies, and
it needs none of these extra items. So we present here a simpler (than in [Blass
and Gurevich 2003a, Section 3]) notion of thesaurus adapted to our present needs.
To avoid confusion with the earlier notion, we say “functional thesaurus”; perhaps
what was called simply a “thesaurus” in [Blass and Gurevich 2003a] should be
called a “relational thesaurus,” or even a “many-valued relational thesaurus with
probabilities.”

Definition 7.27. A functional signum is a triple 〈f, n,G〉 where

—f is an arbitrary symbol,

—n is a natural number, called the arity of the signum, and

—G is a group of permutations of {1, 2, . . . , n}.

A functional thesaurus is a finite set of signa with distinct first components.

In this paper, we’ll often omit the adjective “functional” since these are the
only signa and thesauri that we will consider. The first component f in a signum is
analogous to the function symbols in traditional vocabularies. In fact, we sometimes
write f when we really mean the whole signum. The rest of the signum, 〈n,G〉, is
called the type of the signum; it is analogous to the arity in traditional vocabularies.

We next define the intended semantics of signa and thesauri.

Definition 7.28. An operation of type 〈n,G〉 on a set X is a function F : Xn →
X such that, for each (x1, . . . , xn) ∈ Xn and each π ∈ G,

F (x1, . . . , xn) = F (xπ(1), . . . , xπ(n)).

If Υ is a functional thesaurus, then an Υ-structure X consists of a nonempty base
set |X | and, for each 〈f, n,G〉 ∈ Υ, an operation fX of type 〈n,G〉 on |X |.

We have chosen to regard operations as being defined on n-tuples and being
invariant under the permutation group G, but we could also view them as being
defined on the G-orbits of n-tuples. Semantically, the two approaches are equiv-
alent. Syntactically, the approach we have adopted seems a bit simpler, since we
can continue to use the traditional notation f(t1, . . . , tn) for terms, subject to the
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convention that such a term is to be identified3 with the other terms that arise by
permuting the arguments according to G. The permutation invariance requirement
in the definition of operations of type 〈n,G〉 is exactly what is needed to ensure that,
even with this identification, terms have well-defined values in suitable situations.

With the generalization from vocabularies of function symbols to thesauri of
signa, our work in the preceding sections extends straightforwardly to the new
context. In particular, we would define potential queries to be of the form 〈λ, [~a]〉
considered above in Q′′, with the understanding that each label λ has associated
with it a particular permutation group to be used in producing the equivalence
classes [~a] that go with λ in queries. As we showed in Proposition 7.25, once this
generalized notion of query is in place, we can handle any notion of query that
forms an abstract query system.

In a sequel to this paper, we shall show that every algorithm, as defined here,
is equivalent to an ASM. That work also extends to generalized query systems,
provided we allow the ASMs to have external function signa from a thesaurus
(rather than external function symbols from a vocabulary). In this situation, it
seems natural to also replace the (non-external) function symbols of an ASM’s
state with signa, so that thesauri would replace vocabularies throughout the ASM
theory.

Remark 7.29. We used, in Section 6, a very strong notion of equivalence of
algorithms, implying in particular that each state must have the same contexts
for both algorithms. As a result, replacing one query system by an equivalent
one in the obvious way does not produce an equivalent algorithm. But there is
a natural, weaker notion of equivalence that still conforms to the intuitive idea
that the algorithms do the same thing. This notion of equivalence would permit
replacing a query system by an equivalent one. (An algorithm would include a
specification of its query system. The definition of equivalence of algorithms would
require an equivalence of their query systems, given by bijections eX as above. It
would involve composing one algorithm’s answer functions for X with eX in order
to compare them with the other algorithm’s answer functions.) It would also permit
renaming the function symbols (or the signa) of Υ, without of course changing the
arities (or types).

Remark 7.30. Although it is not needed in this paper, it should be pointed out
that, given the generalization from traditional function symbols to signa, there is
a further generalization that looks natural. For functions f : Xn → X , as used in
traditional structures, there is an asymmetry in that the inputs can be tuples of
arbitrary length while the outputs are single elements of X . One could allow more
general functions, Xn → Xm, but there would be little point in doing so because
such a function is equivalent to m functions Xn → X . In the context of signa,
however, the inputs are (from one point of view) not simply tuples but orbits of
these under some group of permutations of the positions in the tuples. One could
symmetrize the situation by also allowing orbits (for a different group in general)

3To regard two different strings of symbols as being syntactically the same may seem strange,
but other authors have done this also. For example, many people identify syntactically any two
expressions that differ only by renaming bound variables.
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as outputs. Such an orbit-to-orbit operation is not simply equivalent to several
orbit-to-element operations. So in this context, the symmetrization seems like a
natural extension of the framework. We do not pursue this extension here, partly
because, as mentioned above, we do not need it, and partly because it complicates
such syntactic matters as substituting terms for variables in other terms.
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