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Abstract

The following observation may be useful in establishing program
termination: if a transitive relation R is covered by finitely many
well-founded relations U1, . . . , Un then R is well-founded. A question
arises how to bound the ordinal height |R| of the relation R in terms
of the ordinals αi = |Ui|. We introduce the notion of the stature ‖P‖
of a well partial ordering P and show that |R| ≤ ‖α1 × · · · × αn‖
and that this bound is tight. The notion of stature is of considerable
independent interest. We define ‖P‖ as the ordinal height of the forest
of nonempty bad sequences of P , but it has many other natural and
equivalent definitions. In particular, ‖P‖ is the supremum, and in fact
the maximum, of the lengths of linearizations of P . And ‖α1×· · ·×αn‖
is equal to the natural product α1 ⊗ · · · ⊗ αn.
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1 Introduction

A program π, possibly nondeterministic, is terminating if every computation
of π from an initial state is finite. If there is a computation of π from state
x to state y, we say that y is reachable from x and write y ≺ x. A state y
is reachable if it is reachable from an initial state. In practice termination
is often established by means of ranking functions. A ranking function for
π is an ordinal-valued function f on the reachable states of π such that
f(y) < f(x) whenever y ≺ x. Clearly π is terminating if and only if the
reachability relation ≺ over reachable states is well-founded if and only if
π admits a ranking function. If π is terminating then the smallest ordinal
α such that π admits a ranking function with values < α is the ranking
height of π. The following observation [7, 4] may be helpful in establishing
termination.

Lemma 1 (Covering Observation). Any transitive relation covered by finitely
many well-founded relations is well-founded.

In other words, if relations U1, . . . , Un are well-founded and R ⊆ U1∪· · ·∪Un

is a transitive relation, then R is well-founded. The covering observation is
proved by a straightforward application of Ramsey’s theorem. The transi-
tivity of R is essential here. If a, b are distinct elements then the relation
{(a, b), (b, a)} is covered by well-founded relations {(a, b)} and {(b, a)} but is
not well-founded.

Example 2. Let π1 be the program

while a ≤ 1000 ≤ b

choose between

a,b := a+2, b+1

a,b := a-1, b-1

with integer variables a, b. Initially, a and b could be any integers. Since π1’s
reachability relation y ≺ x is covered by well-founded relations ax < ay ≤
1002 and 999 ≤ by < bx, π1 terminates. Obviously the ranking height of
π1 isn’t finite. In fact it is ω, the least infinite ordinal, because the function
|3b−2a| is a ranking function for π1. (The absolute value is used to guarantee
that all values of the function are natural numbers.) Let π2 be the following
modification of π1.
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while a ≤ 1000 ≤ b

choose between

a := a+1

a,b := arbitrary integer, b-1

Again, the covering observation applies, with the well-founded covering rela-
tions ax < ay ≤ 1001 and 999 ≤ by < bx. It is easy to see that the ranking
height of π2 is ω2. In particular the function ωb + |1000 − a| is a ranking
function for π2.

Example 3. Let π3 be the program

while F 6= N2

choose (a,b)∈ N2 − F
F := F ∪ {(a′,b′)∈ N3: a′ ≥ a and b′ ≥ b}

where N is the set of natural numbers, F ⊆ N2, and initially F = ∅. Think
of F as the set of forbidden pairs. Initially, no pairs are forbidden, but once
a pair becomes forbidden it remains so forever. As long as some pairs are
not yet forbidden, the program nondeterministically chooses a non-forbidden
pair (a, b) and forbids it and all pairs (a′, b′) such that a′ ≥ a and b′ ≥ b. For
every noninitial state x of π3 let

A(x) = min{a : (a, b) ∈ Fx for some b}.

If x is the initial state, define A(x) = ∞. Define the function B(x) similarly.
Define C(x) to be the number of points (a, b) ∈ N2 − Fx such that a ≥
A(x) and b ≥ B(x). It is not hard to see that C(x) is always finite. π3’s
reachability relation y ≺ x is covered by the three well-founded relations
A(y) < A(x), B(y) < B(x), and C(y) < C(x). By the covering observation,
π3 is terminating. But this time the ranking height of the program is less
obvious. It is ω2+1; the initial state has rank ω2, and the rank of a noninitial
state x is ω · (A(x) + B(x)) + C(x).

In § 2.2, we recall the definition of the ordinal height |R| of a well-founded
relation R as well as the definition of the ordinal height |x|R of any element
x in the domain of R. If a program π is terminating then the ordinal height
|x|≺ is a ranking function, and |x|≺ ≤ f(x) for any ranking function f for
π. It follows that the ranking height of π is the ordinal height | ≺ | of π’s
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reachability relation ≺. Thus the ordinal height | ≺ | of the relation ≺ is a
relevant measure. In this connection, our colleague, Byron Cook, working on
a program-termination prover [4], asked the following question [3].

Question 4 (Covering Question). If a transitive relation R is covered by
well-founded relations U1, . . . , Un, what is the best bound on |R| in terms of
the ordinals αi = |Ui|?

The covering question led us to investigate well partially ordered sets (in
short, wpo sets). Recall that a sequence 〈x0, x1, . . .〉, finite or infinite, of
elements of a partially ordered set P is bad if there are no indices i < j with
xi ≤ xj and that a partially ordered set P is wpo if every bad sequence in P
is finite. In § 4, we introduce the key notion of this study, the stature ‖P‖ of
a wpo set P . We define ‖P‖ as the ordinal height of the forest of nonempty
bad sequences of P . We then give, in the same section, several alternative
and equivalent definitions of ‖P‖. In particular, ‖P‖ is the height of the
well-founded poset of proper ideals of P . In our view, the notion of stature
is of central importance to the theory of wpo sets.

In § 5 we prove the following theorem to reduce the covering question to
a question about the stature of the direct product α1 × · · · × αn of ordinals
αi. (By Corollary 18, the direct product of finitely many wpo sets is wpo.)

Theorem 5. If R,U1, . . . , Un, α1, . . . , αn are as in the covering question then

|R| ≤ ‖α1 × · · · × αn‖

and this inequality is tight in the following sense. For any ordinals α1, . . . , αn,
there exist relations R,U1, . . . , Un such that R is transitive, U1, . . . , Un are
well-founded, R ⊆ U1 ∪ · · · ∪ Un, each |Ui| = αi, and |R| = ‖α1 × · · · × αn‖.

Applying this theorem to the reachability relation ≺π3 of program π3 of
Example 3, we get that | ≺π3 | ≤ ‖ω×ω×ω‖. But what is ‖α1 × · · · ×αn‖?
This question is addressed in § 6.

Theorem 6. ‖α1 × · · · × αn‖ = α1 ⊗ · · · ⊗ αn.

Here α1 ⊗ · · · ⊗ αn is the natural product of the n ordinals. The natural
sum and natural product of ordinals are recalled in § 2.4.

Corollary 7. If R,U1, . . . , Un, α1, . . . , αn are as in the covering question then

|R| ≤ α1 ⊗ · · · ⊗ αn
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and this inequality is tight in the following sense. For any ordinals α1, . . . , αn,
there exist relations R,U1, . . . , Un such that R is transitive, U1, . . . , Un are
well-founded, R ⊆ U1 ∪ · · · ∪ Un, each |Ui| = αi, and |R| = α1 ⊗ · · · ⊗ αn.

In the case of the program π3 of Example 3, we have | ≺π3 | ≤ ω ⊗ ω ⊗
ω = ω3. It is often convenient to generalize the notion of ranking function
to allow such a function to have values in any well-ordered set. For each
natural number `, let N` be the set of `-tuples of natural numbers ordered
lexicographically, so that the ordinal type of N` is ω`.

Corollary 8. Let R,U1, . . . , Un, α1, . . . , αn be as in the covering question and
assume that αi ≤ ω`i, so that Ui admits a ranking function with values in
N`i. Here each `i is a positive integer. Let ` = `1 + · · ·+ `n. Then R admits
a ranking function with values in N ` but may not admit a ranking function
with values in N`−1.

As we mentioned earlier, the notion of stature is of independent interest.
§ 7, the most involved section of this article, is devoted to a characterization
of the stature of a wpo set P in terms of linearizations of P . Earlier, in § 4,
we notice that every linearization (that is, every linear extension with the
same underlying set) of a wpo set P is well-founded and of length (that is
ordinal height) ≤ ‖P‖. In the process of proving Theorem 6, we construct a
linearization of α1 × · · · × αn of length ‖α1 × · · · × αn‖.

Corollary 9. The supremum of the lengths of linearizations of α1×· · ·×αn

is ‖α1 × · · · × αn‖ and the supremum is attainable.

It turns out that this corollary generalizes to all wpo sets.

Theorem 10. The stature of any wpo set is the largest length of its lineariza-
tions.

A part of our results on wpo sets has been known. In particular, De Jongh
and Parikh proved that among the lengths of linearizations of any wpo set
there is a largest. In § 8 we touch upon the involved history of the theory of
wpo sets and other related work.

We attempt to make this article self-contained. In § 2 we give some pre-
liminary information on partially ordered sets, well-founded partially ordered
sets, wpo sets, ordinal arithmetic, and infinite combinatorics.

In § 3 we introduce games that allow us to compare ordinal heights of
well-founded sets. The game criterion for height inequalities proved to be
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very useful. It may be known, but we have not found an explicit statement
of it in the literature.

Remark 11. The notations |P | and ‖P‖ have many different uses in the
literature. But they are convenient for our purposes and so, with some
apprehension, we use them.

2 Preliminaries

We recall various definitions and facts and use this occasion to fix terminology
and notation.

2.1 Partially Ordered Sets

A binary relation R can be viewed as a set of pairs of elements. A directed
graph, in short digraph, is a pair (X, R) where X is a set and R ⊆ X×X; the
set X is the domain of the digraph. The smallest set X such that R ⊆ X×X
will be called the domain of R.

A poset is a partially ordered set. In other words, a poset is a digraph
where the relation is a partial order. Let P be a poset. The relation <P

(resp. ≤P ) is the strict (resp. non-strict) version of the partial order of P . If
x <P y, we say that x is lower than y in P and that y is higher than x in
P . In this and other similar cases, the subscript may be omitted when it is
clear.

A poset Q extends P if ≤P ⊆ ≤Q, so that the digraph (Dom(Q), Q)
may have more elements as well as more relationships than the digraph
(Dom(P ), P ). A linearization of P is a linearly ordered set with the same
domain that extends P .

An element x ∈ Dom(P ) is the top of P if x ≥P every element of P .
A subset A of (the domain of) P is an antichain of P if the elements of

A are pairwise incomparable. A subset F of P is a filter of P if it is upward
closed, so that y ∈ F if x ≤ y for some x ∈ F . If X is a subset of P then
Min(X) is the antichain of minimal elements of X and

FilterP (X) = {y : y ≥P x for some x ∈ X}.

Filter(X) is the smallest filter that includes X. If A is an antichain then
A = Min(Filter(A)).
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A subset D of P is an ideal if it is downward closed, so that x ∈ D if
x ≤ y for some y ∈ D. Ideals are the complements of filters in P , and the
other way round. If X ⊆ Dom(P ) then the IdealP (X), or simply Ideal(X),
is the ideal Dom(P )− Filter(X). In other words,

Ideal(X) = {y ∈ Dom(P ) : (∀x ∈ X) x 6≤P y}.

An ideal D of P is proper if does not contain all elements of P .

Warning 12. Ideal(X) is the largest ideal that avoids X, rather than —
which is more usual — the smallest ideal that includes X. We will not use
the latter notion while the first one will play a role in this paper. Note
also that many authors require filters to be not only upward closed but also
downward directed (and dually for ideals). Such authors use terminology like
“order-filter” or “up-set” where we use “filter”, and they use “order-ideal”
or “down-set” where we use “ideal”.

The sets FilterP (X) and IdealP (X) inherit partial orderings from P and
thus give rise to posets that are also called FilterP (X) and IdealP (X) respec-
tively. If x ∈ Dom(P ) then

FilterP (x) = FilterP ({x}) = {y ∈ Dom(P ) : y ≥P x},
IdealP (x) = IdealP ({x}) = {y ∈ Dom(P ) : y 6≥P x}

Given finitely many posets P1, . . . , Pn, we can form the direct (or Carte-
sian) product P1×· · ·×Pn with domain Dom(P1)×· · ·×Dom(Pn) where the
n-tuples are ordered componentwise. The direct product operation general-
izes to infinitely many components but we will not need the generalization.

2.2 Well-Founded Partially Ordered Sets

A poset is well-founded if it has no infinite descending sequence. A well-
ordered set is a well-founded, linearly ordered set. Fix a well-founded poset
P . If F is a filter of P then F = Filter(Min(F )).

Each element x of P has an ordinal height |x|P defined by the recursion

|x| = min{ordinal α : α > |y| for all y <P x}.

The height |P | of the poset P itself is the smallest ordinal > |x|P for all
x ∈ Dom(P ). If a poset Q is obtained from P by adding a new top element
∞ to P , then |∞|Q = |P |. The ordinal height of a well-ordered set is also
called its length.
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Lemma 13. For every α < |P |, there is an element x with |x|P = α. If
α < |y|P , then there is an element x < y with |x|P = α.

Proof. The second claim follows from the first: consider the sub-poset given
by the set {z : z < y}. To prove the first claim, notice that elements of
height ≥ α form a nonempty filter; any minimal element x of that filter is of
height α.

Definition 14. A binary relation R is well-founded if there is no infinite
sequence 〈x0, x1, . . .〉 such that xn+1Rxn holds for all n. In the obvious way,
the definition of height generalizes to well-founded relations.

A well-founded relation does not have to be transitive. For example the
successor relation on natural numbers is well-founded but not transitive.
However the transitive closure of a well-founded relation is well-founded as
well.

2.3 Well Partially Ordered Sets

A good reference for this subsection is [14].

Definition 15. Let P be a poset. A sequence 〈x0, x1, . . . 〉 of elements of P ,
finite or infinite, is bad if there are no indices i < j with xi ≤ xj. A poset P
is well partially ordered, or wpo, if all bad sequences in P are finite.

Remark 16. Admittedly, the terminology is not very good. But it is accepted.
We discuss the issue in § 8.

There are many equivalent characterizations of the wpo sets.

Lemma 17. Let P be a poset. The following are equivalent characterizations
of the wpo property. In other words, each of the following claims is equivalent
to the claim that P is wpo.

1. Every infinite sequence 〈x0, x1, . . .〉 of elements of P includes an infinite
weakly increasing subsequence.

2. P is well-founded, and all its antichains are finite.

3. For every filter F of P , there is a finite antichain A such that F =
Filter(A).
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4. For every filter F of P , the antichain Min(F ) is finite and F =
Filter(Min(F )).

5. For every ideal D of P , there is a finite antichain A such that D =
Ideal(A).

6. For every ideal I of P , the antichain A = Min(Dom(P ) − I) is finite
and D = Ideal(A).

The proof is straightforward, using Ramsey’s theorem, Theorem 20, for
items 1 and 2.

Corollary 18. The direct product of finitely many wpo set is wpo.

Proof. Use the first equivalent characterization of the wpo property in the
preceding lemma.

2.4 Ordinal Arithmetic

A good reference for this subsection is the book [17], particularly Section 5.11.
In set theory, an ordinal α is defined as the set {ξ : ξ < α} of smaller

ordinals. In particular, the first infinite ordinal ω is the set of natural num-
bers. Every well-ordered set P is isomorphic to a unique ordinal, namely the
length of P . The cardinality of a set X is the least ordinal α such that there
is a bijection between X and α; ordinals that arise in this way are cardinals.

A limit ordinal is an ordinal α > 0 not of the form β +1 for any β. A set
X of ordinals is cofinal in a limit ordinal α if α is the supremum of X and
α /∈ X. Thus X is cofinal in α if and only if X ⊆ α and for every β < α there
is an element of X that is > β. The cofinality of a limit ordinal α is the least
cardinal κ such that α has a cofinal subset of cardinality κ. Alternatively
and equivalently, the cofinality of a limit ordinal α can be defined as the least
ordinal κ such that there is a (strictly) increasing sequence s = 〈βξ : ξ < κ〉
of ordinals whose range is cofinal in α.

A cardinal is regular if it is equal to its own cofinality. It is easy to see
that, for every limit ordinal α, the cofinality of α is a regular cardinal.

For any ordinal α, the ordinal ωα is the length of the following well-
ordered set P . Dom(P ) is the set of functions f : α → ω such that the
support {ξ < α : f(ξ) > 0} is finite. The order is reverse lexicographic. That
is, f1 <P f2 if and only if f1(ξ) < f2(ξ) for the largest ξ with f1(ξ) 6= f2(ξ).
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Such a largest ξ exists, whenever f1 and f2 are distinct, because the supports
of f1, f2 are finite.

Any ordinal number α can be written in Cantor normal form (with base
ω),

α = ωα1 + ωα2 + · · ·+ ωαn

for a unique finite sequence α1 ≥ α2 ≥ · · · ≥ αn. (There is an alternative ver-
sion where the terms have the form ωαimi with integer coefficients and where
the exponents are strictly decreasing. The two are obviously equivalent.)

The natural sum α ⊕ β of two ordinals α and β is obtained by adding
their Cantor normal forms as if they were polynomials (i.e., as if ω were an
indeterminate), arranging the terms in non-increasing order of exponents. It
is well known and easy to check that the natural sum is strictly increasing
in each of its arguments. (In fact, there is an equivalent definition of ⊕ by
recursion: α ⊕ β is the smallest ordinal strictly above α′ ⊕ β and α ⊕ β′ for
all α′ < α and β′ < β.)

The natural product, α ⊗ β, of two ordinals is defined by multiplying
their Cantor normal forms as if they were polynomials in the indeterminate
ω, using natural addition for the exponents, and arranging the resulting terms
in non-increasing order.

Lemma 19. Natural multiplication is commutative and associative, and it
distributes over natural addition. It is a strictly increasing function of either
argument as long as the other argument isn’t zero.

2.5 Infinite Combinatorics

We recall Ramsey’s theorem for pairs and one generalization of it. If S is a
set then [S]2 is the collection of two-element subsets of S.

Theorem 20 (Ramsey [16]). If S is an infinite set and [S]2 is partitioned
into finitely many pieces, S1, . . . , Sm, then there exists an infinite T ⊆ S such
[T ]2 ⊆ Si for some i.

Theorem 21 (Dushnik and Miller [6]). If κ is a regular cardinal and [κ]2 is
partitioned into two pieces, S1 and S2, then either there exists a κ-element
T1 ⊆ κ with [T1]

2 ⊆ S1 or else there exists an infinite T2 ⊆ κ with [T2]
2 ⊆ S2.

Theorem 20 easily follows from the special case where m = 2 and S = ω,
which is the special case κ = ω of Theorem 21. The proof of Theorem 21
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is very similar to a standard argument for Ramsey’s theorem. (Theorem 21
also holds for singular κ, but the proof, due to Erdős, is more complicated.)

3 Games

We give a useful way to compare the heights of well-founded posets.
Given two posets, P and Q, define a game Γ(P, Q) between two players,

called 1 and 2, played as follows. Player 1 (resp. 2) has a pebble which, at
each noninitial stage of the game is at some element of P (resp. Q). Initially,
the pebble is off the poset. Think about the initial position of the pebble
being above all elements of the poset, at the summit position of P (resp. Q).
This allows us to pretend that, at each stage, including the initial stage, the
pebble occupies some position in the poset. Define the height of the summit
position to be the height of the poset.

The players move alternately, with 1 moving first. A player’s move shifts
his pebble to a position lower than the current one. In particular, the first
move puts the pebble at any element of the poset. If a player is unable to
move, he loses the game, and his opponent wins. We say that a player wins
the game if he has a winning strategy, i.e., a strategy by which he wins no
matter how the opponent plays.

Proposition 22 (Game Criterion). Let P and Q be posets.

• Suppose that P is well-founded. Then player 1 wins Γ(P, Q) if and only
if Q is well-founded and |P | > |Q|.

• Suppose that Q is well-founded. Then player 2 wins Γ(P, Q) if and only
if P is well-founded and |P | ≤ |Q|.

Proof. Q is well-founded if P is well founded and 1 wins the game. Indeed,
if Q is not well-founded then it has an infinite descending sequence, and 1
cannot win a play where 2 moves his pebble along the descending sequence.
Similarly, P is well-founded if Q is well-founded and 2 wins the game. In the
rest of the proof, we may assume that both P and Q are well-founded. It
remains to prove the following two claims.

1. Player 1 wins Γ(P, Q) if and only if |P | > |Q|.

2. Player 2 wins Γ(P, Q) if and only if |P | ≤ |Q|.
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The two right-to-left implications are easy because, in each case, the winning
strategy is to move your pebble to a position whose height is at least as
great as that of the other player’s pebble. Once you have both right-to-left
implications, the left-to-right ones follow, because at most one player can
have a winning strategy and at least one of the ordinal inequalities must
hold.

A map f from a poset P to a poset Q is monotone if f(x) <Q f(y)
whenever x <P y.

Corollary 23. If there is a monotone map from a poset P to a well-founded
poset Q then P is well-founded and |P | ≤ |Q|.

Proof. Player 2 has a winning strategy in Γ(P, Q): whenever 1 moves to a
position x, move to position f(x). Now use Proposition 22.

Remark 24. The game is even more natural for posets with a distinguished
element (pointed posets). Then we don’t need the summit position; initially
the pebbles are at the distinguished elements. The proposition, appropriately
adjusted, remains valid. The corollary, also properly adjusted, remains valid
if we require that the monotone map takes the distinguished element to the
distinguished element. We skip the details of adjustment as we will not use
pointed posets.

Remark 25. The game, the proposition and the corollary generalize in a
straightforward way to the case when P, Q are directed graphs.

4 Stature of a WPO Set

First we give a number of equivalent definitions of stature. Then we prove
some useful facts related to statures and natural sums of ordinals.

4.1 Definition and Equivalent Characterizations

Fix a wpo set P .

Definition 26. B(P ) is the poset of nonempty bad sequences of P . The
ordering is reverse extension: s ≤B t if and only if t is an initial segment of
s.
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Thus s ≤B t if and only if s is an end extension of t. It is easy to see
that B(P ) is a downward-growing forest. By the definition of wpo sets, B is
well-founded.

Definition 27. The stature ‖P‖ of P is the height |B(P )| of B(P ).

Remark 28. We could have defined B(P ) to be the tree of all bad sequences
of P including the empty sequence. The empty sequence would be the root
and the top element of B(P ). Then ‖P‖ could be defined as the height of
the empty sequence in B(P ).

We will give several equivalent characterizations of ‖P‖. To this end, we
define some useful posets.

Definition 29.

• A(P ) is the set of nonempty antichains of P with partial order

A ≤A B ⇐⇒ (∀b ∈ B)(∃a ∈ A) a ≤P b.

• I(P ) is the set of proper ideals of P ordered by inclusion.

• A pointed ideal is a pair (D, d) where D is an ideal and d is a maximal
element of D. P(P ) is the set of pointed ideals of P with partial order

(D, d) <P (E, e) ⇐⇒ D ⊆ E − {e}.

We take the liberty of omitting the argument of A,B, I,P when it is clear
from the context.

Proposition 30. A, I and P are well-founded, and |A| = |I| = |P| = |B| =
‖P‖.

Proof. We split the proposition into a number of claims and repeatedly use
the game criterion of § 3.

P is well-founded and |P| ≤ |B|. By the game criterion, it suffices to con-
struct a winning strategy for player 2 in game Γ(P ,B). When player 1 has
just played (D, x), extend your previous bad sequence by appending x. This
strategy always provides a legal move, so it wins.

I is well-founded and |I| ≤ |P|. We construct a winning strategy for
player 2 in game Γ(I,P). Let D0 = Dom(P ). The ith move of 1 is some
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ideal Di ( Di−1. Choose any yi ∈ Di−1 − Di and play (Ei, yi) where
Ei = Ideal({y1, . . . , yi}) ∪ {yi} = {x ∈ Dom(P ) : x 6> yi and, for all j <
i, x 6≥ yj}. (The key is to play yi in the second component; the first com-
ponent Ei is chosen as big as possible subject to the requirement that yi be
maximal in it and that Ei ⊆ Ej − {yj} for all j < i.) This strategy always
provides a legal move, so it wins.

A is well-founded and |A| = |I|, because A and I are isomorphic. An
isomorphism from I to A is given by D 7→ Min(Dom(P ) − D), and its
inverse is X 7→ Ideal(X)).

|B| ≤ |I|. We construct a winning strategy for player 2 in game Γ(B, I).
When player 1 has just played a bad sequence 〈x1, . . . , x`〉, reply with
Ideal{x1, . . . , x`}. This strategy always provides a legal move, so it wins.

To summarize, we established that A, I,P are well-founded and that |A| =
|I| ≤ |P| ≤ |B| ≤ |I|. It follows that |A| = |I| = |P| = |B|. It remains to
recall that, by the definition of stature, ‖P‖ = |B|.

For future reference, we record the following fact about linearizations of
P .

Proposition 31. Every linearization of a wpo P is well-founded and has
length ≤ ‖P‖.

Proof. Let A be a linearization of P . By the definition of stature in § 4,
‖P‖ = |B|. By the game criterion of § 3, it suffices to construct a winning
strategy for player 2 in Γ(A,B). 1’s moves up to stage ` form a decreasing
sequence s` of length ` in A. Use s` as your reply at stage `. (A direct proof
that A is well-founded is to observe that every decreasing sequence in A is a
bad sequence in P .)

4.2 Statures and Natural Sums

Recall that any ordinal α has a unique Cantor normal form

α = ωα1 + ωα2 + · · ·+ ωαn

where α1 ≥ α2 ≥ · · · ≥ αn, and that the natural sum α ⊕ β of α and β is
obtained by adding their Cantor normal forms as if they were polynomials.
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Lemma 32. Let α have the Cantor normal form exhibited above, let β < α,
and let γ < ωαn. Then β ⊕ γ < α.

Proof. Increasing β if necessary, we may assume that it has the form

β = ωα1 + ωα2 + · · ·+ ωαn−1 + δ

where δ < ωαn (and where the exponents α1, . . . , αn−1 are the same as in the
normal form of α). As both γ and δ are < ωαn , their Cantor normal forms
involve only exponents < αn. So the same is true of their natural sum. But

β ⊕ γ = ωα1 + ωα2 + · · ·+ ωαn−1 + (δ ⊕ γ),

and so the required inequality follows.

Corollary 33. An ordinal of the form ωβ exceeds the natural sum of any
two strictly smaller ordinals.

The corollary is a bit stronger than the analogous assertion without “nat-
ural”, since ξ + η ≤ ξ ⊕ η and the inequality can be strict. We will use the
following obvious consequence of Corollary 33.

Corollary 34. An ordinal of the form ωβ exceeds the natural sum of any
finitely many strictly smaller ordinals.

Our next goal is to relate the statures of a wpo set and its subsets. It
is clear that ‖P‖ ≤ ‖Q‖ whenever P ⊆ Q; indeed the copycat strategy
of player 2 wins Γ(P, Q). On the other hand, we shall see that when two
subsets of a wpo set P cover P their statures add (in the sense of ⊕) to at
least the stature of P . For this, as well as for other purposes later, we need
the following information about statures.

Recall that FilterP (x) is the smallest filter that contains x, IdealP (x)
is the largest ideal that avoids x, and that the corresponding posets (with
partial orders inherited from P ) are also denoted FilterP (x) and IdealP (x)
respectively.

Lemma 35. The stature ‖P‖ of a wpo set P is the smallest ordinal strictly
above ‖IdealP (v)‖ for all v ∈ P .
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Proof. Since ‖P‖ is the height of the forest B(P ), it is the smallest ordinal
strictly greater than the heights of all the roots 〈v〉 of the trees that constitute
the forest B(P ). The height of any 〈v〉 can be computed in the tree of which
〈v〉 is the root, and we shall complete the proof by checking that this height
is exactly ‖IdealP (v)‖.

The tree with 〈v〉 as root consists of all the bad sequences of the form
〈v〉_s. For such a sequence to be bad means that s is bad and that no term
in s is ≥P v. In other words, s must be a bad sequence in IdealP (v). Thus,
the tree with root v is isomorphic to B(IdealP (v)) with a top element added,
and so the proof is complete.

Lemma 36. Let (the domain of) a wpo set Q be the union of (the domains
of) finitely many sub-posets Q1, . . . , Qn. For any sub-poset P of Q, we have
‖P‖ ≤ ‖Q1‖ ⊕ · · · ⊕ ‖Qn‖.

Proof. We proceed by induction on the stature ‖P‖ of the focal poset P ,
so assume the lemma holds for all cases where the focal poset is of strictly
smaller stature. In view of the preceding lemma, it suffices to prove that,
for each x ∈ P , ‖IdealP (x)‖ < ‖Q1‖ ⊕ · · · ⊕ ‖Qn‖. For this purpose, fix
an arbitrary x ∈ P ; assume without loss of generality that x ∈ Q1 so that
IdealQ1(x) is a proper ideal of Q1. If i > 1 and x ∈ Qi then IdealQi

(x) is a
well-defined proper ideal of Qi; otherwise the notation IdealQi

(x) has not yet
been assigned a meaning but it is convenient to adopt the convention that
IdealQi

(x) = Qi.
By induction hypothesis, we have

‖IdealP (x)‖ ≤ ‖IdealQ1(x)‖ ⊕ · · · ⊕ ‖IdealQn(x)‖.

Now since x ∈ Q1, we have that

‖IdealQ1(x)‖ < ‖Q1‖.

For Qi with i > 1 we cannot use the same argument, since we don’t neces-
sarily have x ∈ Qi, but we still have

‖IdealQi
(x)‖ ≤ ‖Qi‖ for all i > 1.

Combining the three displayed inequalities and the strict monotonicity of ⊕,
we get ‖IdealP (x)‖ < ‖Q1‖ ⊕ · · · ⊕ ‖Qn‖ as required.
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5 Reduction of Covering Question

We return to the covering question discussed in the introduction and prove
Theorem 5. Assume that U1, . . . , Un are well-founded relations and that R is
a transitive relation included in U1∪· · ·∪Un. Let X = Dom(R). Without loss
of generality, each Dom(Ui) ⊆ X. By an argument using Ramsey’s theorem,
Theorem 20, R is well-founded. We seek to bound its ordinal height in
terms of the ordinals αi = |Ui|. The direct product α1 × · · · × αn of the
ordinals α1, . . . , αn can be seen as a poset where the n-tuples are ordered
componentwise. That poset is wpo by Corollary 18.

Proposition 37. Under the assumptions above, |R| ≤ ‖α1 × · · · × αn‖.
Proof. According to Definition 27, we need to prove that |R| ≤ |B(α1×· · ·×
αn)|. According to the game criterion of § 3, it suffices to prove that player 2
has a winning strategy in game

Γ
(
(X, R),B(α1 × · · · × αn)

)
.

The desired strategy is simple. Whenever player 1 moves his pebble to a new
point x ∈ X, extend the current bad sequence (or the empty sequence if this
is the first move) by appending the element (|x|U1 , . . . , |x|Un) of α1×· · ·×αn.
We need to check only that this preserves badness of the sequence. Since
the opponent’s current move x is R-below all his previous moves y (thanks
to transitivity of R) and since R ⊆ U1 ∪ · · · ∪ Un, we have, for each earlier
y, that x Ui y and therefore |x|Ui

< |y|Ui
hold for some i. Thus, the n-tuple

(|x|U1 , . . . , |x|Un) cannot be ≥ the earlier n-tuple (|y|U1 , . . . , |y|Un), so badness
persists.

Proposition 38. The bound in the previous proposition is tight. That is,
given any ordinals α1, . . . , αn, we can find well-founded relations U1, . . . , Un

of at most these heights and we can find a transitive R ⊆ U1 ∪ · · · ∪ Un with
|R| = ‖α1 × · · · × αn‖.
Proof. Let (X, R) be the poset B(α1 × · · · × αn) of nonempty bad sequences
in α1 × · · · × αn. If s, t are nonempty bad sequences with last members
(ξ1, . . . , ξn) and (η1, . . . , ηn) respectively, set tUis ⇐⇒ ηi < ξi. Obviously,
every Ui is well-founded and |Ui| = αi. If tRs holds, then t is an end-extension
of s. By the definition of bad sequences, (ξ1, . . . , ξn) 6≤ (η1, . . . , ηn), and so
tUis holds for some i. Thus R is covered by the relations U1, . . . , Un.

Theorem 5 follows from the two propositions.
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6 Stature of Direct Product of Several Ordi-

nals

The goal of this section is to prove Theorem 6. The theorem asserts that
‖α1 × · · · × αn‖ = α1 ⊗ · · · ⊗ αn for any natural number n and any ordinals
α1, . . . , αn. In § 6.1 we will prove that ‖α1 × · · · × αn‖ ≥ α1 ⊗ · · · ⊗ αn, and
in § 6.2 will prove that ‖α1 × · · · × αn‖ ≤ α1 ⊗ · · · ⊗ αn. But first we state a
characterization of natural sums for future reference.

Recall that the natural sum α ⊕ β of two ordinals is defined by adding
their Cantor normal forms as if they were polynomials [§ 2.4]. It is clear from
this definition that a well-ordered set of length α⊕β can be partitioned into
two subsets of length α and β.

Lemma 39. α ⊕ β is the largest ordinal that admits a partition into two
subsets of lengths α and β.

Though this is well-known, we point out that it follows also from Lem-
mas 36 and 44.

6.1 The Natural Product is Small Enough

In this section, we prove that the stature of α1 × · · · × αn is at least as large
as natural product of the n ordinals. We start with the case n = 2.

Lemma 40. Let α and β be arbitrary ordinals.

1. There is a linearization of α× β of length α⊗ β.

2. ‖α× β‖ ≥ α⊗ β.

Proof. In virtue of Proposition 31, the first claim implies the second. So it
suffices to prove claim 1. In the rest of the proof we construct the desired
linearization. We do that by induction on α ⊗ β. The zero case is trivial.
The induction step splits into two cases.

Case 1: At least one of α and β is not a power of ω. Without loss of
generality, suppose it is α. Let the Cantor normal forms of α and β be

α = ωµ1 + · · ·+ ωµm ,

β = ων1 + · · ·+ ωνn ,
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where µ1 ≥ · · · ≥ µm and ν1 ≥ · · · ≥ νn and m > 1. Concerning n, we know
only that n ≥ 1. The Cantor normal form of α⊗ β has the form

α⊗ β = ωπ1 + · · ·+ ωπmn

where π1 ≥ · · · ≥ πmn and every πp = µi ⊕ νj for some 1 ≤ i ≤ m and
1 ≤ j ≤ n, arranged in non-increasing order. This gives rise to a bijection

f : {1, . . . ,m} × {1, . . . , n} → {1, . . . ,mn}

such that πf(i,j) = µi ⊕ νj. Since the same ordinal can occur as µi ⊕ νj

for several pairs (i, j), there is some freedom in the choice of f . It will be
convenient to specify f so that f(i, j) < f(k, l) if and only if one of the
following three conditions is satisfied.

(1) µi ⊕ νj > µk ⊕ νl.

(2) µi ⊕ νj = µk ⊕ νl and i < k.

(3) µi ⊕ νj = µk ⊕ νl and i = k and j < l.

There is a unique such function because the three clauses define a linear
ordering of the pairs (i, j). The first condition suffices to ensure that the se-
quence 〈πf(i,j)〉 is non-increasing, as required above. We record the following
claim about f for future reference.

Claim 41. If f(i, j) < f(k, l) then i < k or j < l (or both).

Proof. The claim is obvious if the inequality f(i, j) < f(k, l) holds by virtue
of clause (2) or (3). If the inequality holds by virtue of clause (1), we argue
by contradiction. If we had both i ≥ k and j ≥ l, then, since the µ and ν
sequences are non-increasing, we would have µi ≤ µk and νj ≤ νl. But then
µi ⊕ νj ≤ µk ⊕ νl, contrary to clause (1).

Now partition α into consecutive segments A1, . . . , Am of lengths
ωµ1 , . . . , ωµm respectively, and partition β into consecutive segments
B1, . . . , Bn of lengths ων1 , . . . , ωνn respectively. Each Ai ×Bj can be viewed
as a partially ordered set where the order is componentwise. For each pair
(i, j), fix a linearization Cf(i,j) of height ωµi⊕νj . Such linearizations exist by
the induction hypothesis, since every ωµi < α and every ωνj 6= 0. By the
definition of α⊗ β, the concatenation

C = C_
1 · · ·_ Cmn
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is of length α ⊗ β. It remains to show that C extends the partially ordered
set α× β. That will complete Case 1 of the proof of the proposition.

Within each block Ai × Bj, there is no problem, since Cf(i,j) extends
Ai×Bj by the definition of Cf(i,j). The only possible problem arises between
elements of different blocks. Suppose, toward a contradiction, that something
goes wrong, i.e., we have

f(i, j) < f(k, l),

and (γ, δ) ∈ Cf(i,j), (ε, ζ) ∈ Cf(k, l),

but (ε, ζ) ≤ (γ, δ) in α× β.

By Claim 41, either i < k or j < l. If i < k, then the segment Ai

of α, which contains γ, precedes the segment Aj, which contains ε; hence
γ < ε. Similarly, j < l implies δ < ζ. In either case, this contradicts that
(ε, ζ) ≤ (γ, δ) in α× β.

Case 2: Both α and β are powers of ω, say α = ωµ and β = ων . We need
to prove that there is a linearization of the poset ωµ × ων of length ωµ⊕ν .

Recall that every ωγ is the length of a linearly ordered set Bγ such that
Dom(Bγ) is the set of finite-support functions f : γ → ω and the order of
Bγ is reverse lexicographic [§ 2.4]. Since the posets ωµ ×ων and Bµ ×Bν are
isomorphic, it suffices to prove that there is a linearization of Bµ×Bν of the
length of Bµ⊕ν . To this end, it suffices to produce a bijection C from Bµ×Bν

onto Bµ⊕ν that is monotone in both arguments. Indeed such a map gives a
linearization

(f, g) < (f ′, g′) ⇐⇒ C(f, g) < C(f ′, g′)

of Bµ ×Bν of the length of Bµ⊕ν .
By the definition of natural sum [§ 2.4], µ⊕ ν can be partitioned into two

subsets, M of length µ and N of length ν. Let BM (resp. BN) be the poset
of finite-support functions f from M (resp. N) to ω ordered in the reverse
lexicographic way. Since posets BM × BN and Bµ × Bν are isomorphic, it
suffices to prove that there is a bijection D from BM × BN onto Bµ⊕ν that
is monotone in both arguments.

The desired map D sends (f, g) to the union f ∪ g (where we view a
function as a set of ordered pairs). Then D is clearly a one-to-one map from
BM × BN to BM∪N = Bµ⊕ν . D is monotone; that is, if f ≤ f ′ and g ≤ g′

then D(f, g) ≤ D(f ′, g′). This is because the last place (in µ ⊕ ν) where
D(f, g) and D(f ′, g′) differ either lies in M and is the last place where f and
f ′ differ or lies in N and is the last place where g and g′ differ.
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It remains to check that every finite-support function h : ωµ ⊕ ων → ω
has the form f ∪ g where f : M → ω and g : N → ω. The desired f, g are
the restrictions of h to M, N respectively.

Proposition 42. For every natural number n and all ordinals α1, . . . , αn,

1. There is a linearization of α1 × · · · × αn of length α1 ⊗ · · · ⊗ αn.

2. ‖α1 × · · · × αn‖ ≥ α1 ⊗ · · · ⊗ αn.

Proof. Again, in virtue of Proposition 31, the first claim implies the second.
So it suffices to prove claim 1. We do that by induction on n. Cases n < 2 are
trivial, and case n = 2 is Lemma 40. We suppose that n ≥ 2 and that claim 1
holds for all natural numbers ≤ n, and we prove the case n+1 of claim 1. By
the induction hypothesis, there is a linearization A of α1× · · ·×αn of length
α1 ⊗ · · · ⊗ αn. So the (componentwise) partial order of α1 × · · · × αn × αn+1

can be extended to the componentwise partial order A×αn+1 isomorphic to
(α1 ⊗ · · · ⊗ αn) × αn+1. By Lemma 40, this can in turn be extended to a
linear order of length α1 ⊗ · · · ⊗ αn ⊗ αn+1.

6.2 The Natural Product is Large Enough

In this section, we prove that the stature of α1 × · · · ×αn is at most as large
as the natural product of the n ordinals.

Proposition 43. For every natural number n and all ordinals α1, . . . , αn,
we have ‖α1 × · · · × αn‖ ≤ α1 ⊗ · · · ⊗ αn.

Proof. Without loss of generality n ≥ 2. We prove the proposition by induc-
tion on α1 ⊗ · · · ⊗ αn. The base case α1 ⊗ · · · ⊗ αn = 0 (so that one of the
ordinals αi is 0) is trivial. The induction step splits into two cases.

Case 1: At least one of ordinals αi is not of the form ωµ. Without loss of
generality, the Cantor normal form of α1 has at least two terms. Notice that
any ordinal is the natural sum (as well as the ordinary sum) of the terms
in its Cantor normal form. So we have α1 = α′ ⊕ α′′ = α′ + α′′ with both
summands < α. (To be specific, take α′′ to be the last term in the Cantor
normal form and α′ to be the sum of all the earlier terms.) So α is the disjoint
union of its initial segment α′ and a final segment F of length α′′. Therefore

α× α2 × · · · × αn = (α′ × α2 × · · · × αn) ∪ (F × α2 × · · · × αn).
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By Lemma 36, we have

‖α× α2 × · · · × αn‖ ≤ ‖α′ × α2 × · · · × αn‖ ⊕ ‖F × α2 × · · · × αn‖
≤ (α′ ⊗ α2 ⊗ · · · ⊗ αn)⊕ (α′′ ⊗ α2 ⊗ · · · ⊗ αn)

= α⊗ α2 ⊗ · · · ⊗ αn,

where the second inequality comes from the induction hypothesis and the
final equality is the distributivity of ⊗ over ⊕.

Case 2: αi = ωµi for i = 1, . . . , n. Let P = α1 × · · · × αn. By Lemma 35,
‖P‖ is the smallest ordinal strictly above ‖IdealP (ξ1, . . . , ξn)‖ for any ξi ∈ αi.
So it suffices to show that, for all such ξ1, . . . , ξn,

‖IdealP (ξ1, . . . , ξn)‖ < α1 ⊗ · · · ⊗ αn.

Fix an arbitrary tuple (ξ1, . . . , ξn) ∈ P and let I = IdealP (ξ1, . . . , ξn). We
show that ‖I‖ < α1 ⊗ · · · ⊗ αn.

The set I is covered by the subsets P1, . . . , Pn where Pi is obtained from P
by replacing the ith factor αi with ξi. By Lemma 36, ‖I‖ ≤ ‖P1‖⊕· · ·⊕‖Pn‖.
By the induction hypothesis, each ‖Pi‖ is bounded by the natural product
of ξi and n − 1 ordinals αj with j 6= i. By the strict monotonicity of ⊕, we
have

‖Pi‖ < α1 ⊗ · · · ⊗ αn = ωµ1⊕···⊕µn .

for each i. By Corollary 34, the ordinal ωµ1⊕···⊕µn , is strictly larger than the
natural sum of any finite number of smaller ordinals. It follows that

‖I‖ ≤ ‖P1‖ ⊕ · · · ⊕ ‖Pn‖ < ωµ1⊕···⊕µn = α1 ⊗ · · · ⊗ αn.

Propositions 42 and 43 imply Theorem 6.

7 Stature is Maximal Linearization Length

In this section, we prove Theorem 10: The stature of a wpo set P is the largest
among the lengths of linearizations of P . In § 4.1, we showed that every
linearization of P is well-founded and has length ≤ ‖P‖ (Proposition 31). It
remains to prove that the supremum of linearization lengths of P is attainable
and equal to ‖P‖. This is easy if P is linearly ordered.
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Lemma 44. If P is a well-ordered set then the supremum of linearization
lengths of P is attainable and equal to ‖P‖.

Proof. The first claim is trivial as there is only one linearization and so the
supremum is |P |. To prove the second claim, recall that, by Proposition 30,
‖P‖ = |P(P )|. But P(P ) is isomorphic to P via by the map (D, d) 7→ d.

In the rest of this section, we prove that, for any wpo set P , the supremum
of linearization heights of P is attainable and equal to ‖P‖.

7.1 Long Consistent Sequence Suffices

Definition 45. Two posets P and Q are consistent if there is no pair {x, y}
such that x <P y <Q x.

A sequence s = 〈xβ : β < α〉 of distinct elements of a poset P can be
viewed as a linearly ordered set where xβ ≤s xγ if and only if β ≤ γ.

Definition 46. A sequence s = 〈xβ : β < α〉 of distinct elements of P is
consistent with P if the posets P and s are consistent.

In this subsection, we prove that a wpo set P has a linearization of length
‖P‖ if it has a consistent sequence of elements of length ‖P‖. We start with
an auxiliary result.

Lemma 47. Let P be a poset (not necessarily wpo), and let A be a linearly
ordered set with Dom(A) ⊆ Dom(P ). If A and P are consistent then there
is a linearization of P that extends A.

Proof. Let R be the binary relation ≤P ∪ ≤A. It suffices to prove that the
digraph G = (Dom(P ), R) is acyclic. Indeed if G is acyclic then the transitive
closure R∗ of R is a partial order. Extend R∗ to a linear order (by Zorn’s
lemma, any poset can be extended to a linearly ordered set) and get the
desired linearization of P .

So suppose, toward a contradiction, that G has a cycle C. Since ≤P and
≤A are transitive, we can combine consecutive “steps” in the same ordering.
Thus, without loss of generality, C has the form x0, x1, . . . , xn−1 where xi <P

xi+1 for even i and xi <A xi+1 for odd i. Here we take the subscripts modulo
n, so that when i = n− 1 we interpret i + 1 as 0. Also, n is even. Note that
each xi is in A because it is related by <A to either xi−1 or xi+1. Since ≤A
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linearly orders A, let j be the index for which xj is largest, with respect to
≤A.

In particular, xj >A xj+1. But if j is odd then xj <A xj+1, a contradiction.
So j is even and xj <P xj+1. But then A and P are inconsistent contrary to
the hypothesis of the lemma.

Remark 48. The linearity of A is essential for the proof of the lemma. It is not
true that, if two posets P, Q with the same domain are consistent, then there
is a partial order extending both of them. For a counterexample, take the
common domain to be a four-element set {a, b, c, d}, take <P = {(a, b), (c, d)},
and take <Q= {(b, c), (d, a)}. Then P and Q are consistent, yet the union of
the order relations contains a cycle.

Lemma 49. Let P be a wpo set, and suppose that there is a sequence
s = 〈xα : α < ‖P‖〉 of elements of P consistent with P . Then there is
a linearization of P of length ‖P‖.

Proof. By Lemma 47, there is a linearization A of P that extends s. By
Proposition 31, A is well-founded and |A| ≤ ‖P‖. Since A extends s, we
have |A| ≥ |s|; one easy way to see that |A| ≥ |s| is to use a game as in § 3.
But |s| = ‖P‖. So |A| = ‖P‖.

7.2 Producing a Long Consistent Sequence

Proposition 50. For every wpo set P , there is a linearization of P of length
‖P‖.

Proof. Fix a wpo set P . According to Lemma 49, it suffices to prove that
there is a sequence s = 〈xα : α < ‖P‖〉 of elements of P consistent with P .
We do that by induction on ‖P‖.

Case 1: ‖P‖ = 0. Trivial.

Case 2: ‖P‖ is a successor ordinal α+1. By Lemma 35, there is an element
x ∈ P such that ‖IdealP (x)‖ = α. Let I be IdealP (x) viewed as a poset. By
induction hypothesis, we have an α-sequence s of elements of I consistent
with I. Appending x to s, we get the desired ‖P‖-sequence of elements of P
consistent with P .

Case 3: ‖P‖ is a limit ordinal but not of the form ωα. So the Cantor normal
form of ‖P‖ has at least two summands; let ωε be the last summand, and
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let δ be the sum of all the other terms in the Cantor normal form. So

‖P‖ = δ + ωε = δ ⊕ ωε.

By Lemma 35, there is x ∈ P such that δ < ‖IdealP (x)‖ < ‖P‖. Applying
Lemma 36 with the posets IdealP (x) and FilterP (x) in the roles of Q1 and
Q2, we obtain

‖P‖ ≤ ‖IdealP (x)‖ ⊕ ‖FilterP (x)‖.

It follows, by Lemma 32, that we cannot have ‖FilterP (x)‖ < ωε.
By induction hypothesis, IdealP (x) contains a consistent sequence s of

length ‖IdealP (x)‖ > δ. And FilterP (x) contains a consistent sequence t of
length ≥ ωε. Indeed, let Q be the poset FilterP (x). If ‖Q‖ < ‖P‖ then the
induction hypothesis gives t of length ‖FilterP (x)‖ ≥ ωε. Otherwise ‖Q‖ =
‖P‖. Use Lemma 35 to find w ∈ Q such that ωε ≤ ‖IdealQ(w)‖ < ‖P‖. By
applying the induction hypothesis to IdealQ(w), we again get a consistent
sequence t of length ≥ ωε.

The concatenation s_t has length at least δ + ωε = ‖P‖. It is consistent
with P because s and t are consistent with P and because all elements of t
and no elements of s are ≥P x.

Case 4: ‖P‖ = ωα for some non-zero ordinal α. Let κ be the cofinality of
ωα, and let 〈βξ : ξ < κ〉 be a strictly increasing sequence of ordinals cofinal
with ωα. Recall that κ, being the cofinality of something, must be a regular
cardinal.

Lemma 51. There is an increasing sequence 〈xξ : ξ ∈ κ〉 of elements of P
such that ‖IdealP (xξ)‖ > βξ for all ξ ∈ κ.

Proof. For each ξ < κ, use Lemma 35 to obtain some yξ ∈ P with
‖IdealP (yξ)‖ > βξ. Although there may be repetitions in the sequence 〈yξ〉,
no single element y can be yξ for κ different ordinals ξ. The reason is that, if
there were such a y, then ‖IdealP (y)‖ would be greater than the correspond-
ing ordinals βξ. As any κ of these ordinals have supremum ωα, we would
have ‖IdealP (yξ)‖ ≥ ωα = ‖P‖, which is absurd.

Because no element occurs κ times in the sequence 〈yξ〉 and because κ
is regular, the set S = {ξ : yξ 6= yη for all η < ξ} contains κ ordinals. We
can therefore extract a subsequence of 〈yξ〉 in which there are no repetitions.
Specifically, let f(ξ) be the ξth ordinal in S, and let y′ξ = yf(ξ). Then all the
y′ξ are distinct and, since f(ξ) ≥ ξ, we have ‖IdealP (y′ξ)‖ > βf(ξ) ≥ βξ. (That
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f(ξ) ≥ ξ is probably intuitively evident; for a proof see [17, Theorem 5.1.1].)
From now on, we work with the y′ξ and we omit the primes.

Invoking again the regularity of κ, we can apply the Dushnik-Miller the-
orem, Theorem 21, to the partition where S1 = {{ξ < η} : yξ ≤P yη} and
S2 = [κ]2 − S1. If an infinite subset T of κ had [T ]2 ⊆ S2, then the first ω
elements of T would constitute an infinite bad sequence, contrary to the as-
sumption that P is wpo. So, by the Dushnik-Miller theorem, there must be a
κ-element subset T ⊆ κ such that [T ]2 ⊆ S1. Letting g(ξ) denote the ξth ordi-
nal in T and letting xξ = yg(ξ), we obtain the conclusion of the lemma. Indeed,
the homogeneity of T ensures that the sequence 〈xξ : ξ ∈ κ〉 is increasing, and
because g(ξ) ≥ ξ we have ‖IdealP (xξ)‖ = ‖IdealP (yg(ξ))‖ > βg(ξ) ≥ βξ.

Lemma 52. There is an increasing sequence 〈xξ : ξ ∈ κ〉 of elements of P
such that

‖Ideal(xξ+1)‖ > ‖Ideal(xξ)‖ ⊕ βξ for all ξ < κ.

Proof. By Lemma 51, there is an increasing sequence s = 〈yξ : ξ ∈ κ〉 such
that every ‖IdealP (yξ)‖ > βξ. The desired 〈xξ : ξ ∈ κ〉 is a subsequence of s
built by recursion. Start with x0 = y0 and, at limit stages of the recursion,
simply take the next yη after all those previously taken. The nontrivial case
is the successor step, where we already have xξ and must find an appropriate
xξ+1. Since the statures of the sets Ideal(yη) approach ‖P‖ = ωα, it suffices
to check that ‖Ideal(xξ)‖ ⊕ βξ < ωα. Fortunately, this follows immediately
from Corollary 33. This completes the proof of the lemma.

Let 〈xξ : ξ ∈ κ〉 be as in Lemma 52. Temporarily fix some ξ < κ. Since
Ideal(xξ+1) is obviously the union of Ideal(xξ) and Ideal(xξ+1) ∩ Filter(xξ),
Lemma 36 gives us that

‖Ideal(xξ+1)‖ ≤ ‖Ideal(xξ)‖ ⊕ ‖Ideal(xξ+1) ∩ Filter(xξ)‖.

Comparing this with Lemma 52, we find that

‖Ideal(xξ+1) ∩ Filter(xξ)‖ ≥ βξ.

Applying the induction hypothesis to Ideal(xξ+1) ∩ Filter(xξ) (which has
lower stature than P because it’s a subset of Ideal(xξ+1)), we obtain, in
Ideal(xξ+1) ∩ Filter(xξ), a sequence sξ of length at least βξ which is consis-
tent with Ideal(xξ+1) ∩ Filter(xξ) and therefore is consistent with P .
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Now un-fix ξ. Let t be the concatenation of all the sequences sξ, in order
of increasing ξ. The length of t is, for each ξ, at least βξ, since sξ is a segment
of t. So the length of t is at least the supremum of the βξ’s, which is ωα.

To complete the proof, it remains only to check that t is consistent with
P . Since each sξ has this property, the only thing that can go wrong is that
there are ξ < η with some y in sη being ≤P some x ∈ sξ. To see that this
cannot happen, suppose it did, and recall where these sequences sξ and sη

came from. The former was chosen from Ideal(xξ+1)∩Filter(xξ), so x 6≥ xξ+1,
while the latter was chosen from Ideal(xη+1) ∩ Filter(xη), so y ≥ xη. Since
the sequence 〈xξ : ξ ∈ κ〉 is increasing, and since ξ < η, we have

x ≥ y ≥ xη ≥ xξ+1,

a contradiction. Proposition 50 is proved.

Propositions 31 and 50 imply Theorem 10.

8 Related Work

We describe in this section earlier work on two concepts central to this paper,
namely well partially ordered sets and natural products of ordinals.

8.1 Natural Products

Natural sums and natural products of ordinals are defined in Hausdorff’s
book [9, pages 68–70]. Hausdorff credits these concepts to Hessenberg, citing
[10, § 75], but the cited section contains only natural sums, not products, nor
have we found natural products elsewhere in [10].

Carruth [2] proved that every linearization of the componentwise partial
order on α × β has length at most α ⊗ β. In our presentation, this fact is a
consequence of Propositions 31 and 43. Carruth’s argument is fairly complex,
using neither any notion of stature nor indeed any notion of well partially
ordered set. Carruth’s motivation came from the theory of ordered abelian
groups; he shows how to bound, in terms of the length of a well-ordered set
X of positive elements in such a group, the length of the (necessarily also
well-ordered) subsemigroup generated by X.
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8.2 Well Partially Ordered Sets

Well partially ordered sets were introduced by Higman [11]. He called them
partially ordered sets with the finite basis property. This terminology refers
to the characterization given by item 3 in our Lemma 17, which Higman used
as the definition. He proved several equivalent characterizations, including
the main points of Lemma 17 and the well-foundedness of I. His main result
is that when P is wpo then so is the set of finite sequences from P , ordered
by “componentwise majorized by a subsequence of”.

The second author [8] independently discovered the notion of wpo, in-
troduced the terminology “tight partial order”, and proved some cases of
Higman’s result that he needed for investigations about decidability in pred-
icate logic. The word “tight” was meant to refer to a boot, where one cannot
move downward or sideways but only upward.

Kruskal [13] developed the theory of wpo sets further, proving a celebrated
result about certain posets of trees being wpo. He seems to be the first to
use the terminology “well-quasi-ordering”. (“Quasi” in place of “partial”
means that ≤ is not required to be antisymmetric. Many authors write
“preorder” instead of “quasi-order”, but “prewellorder” means something
different from well-quasi-order. A prewellorder is a preorder whose partially
ordered quotient, obtained by identifying x and y whenever x ≤ y ≤ x, is
a well-order.) Kruskal mentions that previous authors have used the terms
“well-partial-ordering” and “partial well-ordering. Even at this early stage
of the development of wpo theory, the terminology had become so chaotic
that Kruskal gives, at the end of [13], a glossary for matching his terminology
with Higman’s.

In [14], Kruskal describes much of the early history of the wpo concept
(though he was unaware of [8]). He mentions yet another name for the
concept, “fairly well-ordered”, used by Michael [15].

De Jongh and Parikh [5] give several equivalent characterizations of wpo,
adding to Higman’s list the property that all linearizations are well-ordered.
Furthermore, they show that among the ordinal lengths of these linear or-
derings there is a largest one. In the case of a Cartesian product α × β of
ordinals, they show that this largest length of a linearization is α⊗β. Recall
that, by Theorem 10, the stature of a wpo set P equals the largest length of
a linearization, which de Jongh and Parikh call o(P ). In this sense, [5] can
be regarded as introducing the notion of stature, though without a name and
without other equivalent descriptions (such as our definition in terms of the
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forest of nonempty bad sequences).
The definition of stature that we use, the height of the forest of nonempty

bad sequences, was studied by Kř́ıž and Thomas [12], who called it the type
of P and used the notation c(P ) for it. They assert (in their Theorem 4.7)
that this equals the largest length of a linearization, but there seems to be a
problem with the proof. Their Theorem 4.6 uses in an essential way that the
disjoint union of two posets was defined with the two parts incomparable,
but then this theorem is applied in a situation where the incomparability re-
quirement is violated. Nevertheless, their Lemma 4.5 motivated our use of the
Dushnik-Miller theorem in the proof of Lemma 51; in fact, their Lemma 4.5
essentially re-proves the relevant case of the Dushnik-Miller theorem.

Remark 53. As already indicated, the notion of wpo set has acquired
many names as a result of being discovered many times. (Yet another
name, “Noetherian”, is used in [1, page 33]; other authors, however, use
“Noetherian” to mean that the reverse ordering is well-founded.) If we could
choose between the many names, we would prefer “tight”, and not just be-
cause one of us introduced it. It’s short and (with the boot metaphor) de-
scriptive, and it doesn’t use “well” as an adjective (as in “well partial order”).
A second choice would probably be “finite basis property”. Although longer,
it summarizes nicely one of the equivalent characterizations of the notion. It
also has the advantage of being the name used by Higman, who introduced
the concept.

Unfortunately, the terminology “well partially ordered” and its close rel-
ative “well quasi-ordered” are used so commonly, and the alternatives so
rarely, that it seems hopeless to advocate a change of terminology now. We
have therefore resigned ourselves to wpo.

An imaginative interpretation of “well partial order” is to invoke the other
meaning of “well”, namely a source of water from underground. Like a boot,
a well (at least an old-fashioned one) is closed at the bottom and sides but
open at the top. Think of a well partial order as a partial order where, as in
a well, the only direction for unrestricted motion is upward.
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