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A recent experiment �Boncheva et al. Proc. Natl. Acad. Sci. U.S.A. 102, 3924 �2005�� introduced the
possibility of initiating the self-assembly of a three-dimensional structure from a flat elastic sheet. The ultimate
utility of this method for assembly depends on whether it leads to incorrect, metastable structures. Here we
examine how the number of metastable states depends on the sheet shape and thickness. Using simulations and
theory, we identify out-of-plane buckling as the key event leading to metastability. The buckling strain that
arises from joining edges of a planar sheet can be estimated using the theory of dislocations in elastic media.
The number of metastable states increases rapidly with increasing variability in the boundary curvature and
decreasing sheet thickness.
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INTRODUCTION

Methods for self-assembly have traditionally focused on
bringing together identical building blocks into a desired
configuration. The most natural strategy is to design an en-
ergy landscape with the desired outcome as the energy mini-
mum �2,3�. The primary difficulty with this strategy is the
prevalence of local minima. For example, if we consider
clusters of N particles interacting through a van der Waals
potential, the number of local minima increases from at least
4 for N=7 to 988 for N=13 �4�. For this reason successful
assembly strategies have generally employed patterned sur-
faces or templates to decrease the number of local minima
�5–10�.

Recently Boncheva et al. have outlined a completely dif-
ferent paradigm for self-assembly �1�. Instead of basing the
self-assembly on small building blocks, they consider the
spontaneous folding of a planar elastic sheet into a �prespeci-
fied� closed surface, driven by interacting elements on the
surface of the sheet. Three different sheet shapes were cho-
sen �see Fig. 1�, all of which can be naturally assembled into
a sphere. These sheets were fabricated out of the elastomer
polydimethylsiloxane, with small rigid magnets as interact-
ing elements. Whether the sheet folded into a sphere de-
pended critically on �i� the shape of the sheet, �ii� the loca-
tions of the interacting elements, and �iii� the nature of the
external forcing that was applied during the assembly. For
example, the shape in Fig. 1�a� required the action of capil-
lary forces and gravity to fold correctly. The shape misfolded
when suspended in water. The shape in Fig. 1�f� folded only
when shaken vigorously, while that in Fig. 1�j� required only
mild agitation to facilitate folding. The fact that some of the
sheets misfold illustrates that this system can be plagued
with multiple equilibria. The potential for misfolding de-
pends on the design choices for the shape of the sheet and the
locations of the interacting elements.

The experimental design strategy was to place magnetic
loops on the closed sheet, then cut open and flatten the sheet
and attached magnets into the plane. The idea behind this

strategy was that once the structure was released from its
support, the magnets would minimize energy by reforming
the loops, and thus close the sheet. In general, this is a global
strategy, because the folding depends on the attraction be-
tween magnets at the ends of the open loops, which may be
at a distance as large as the sheet size. In our simulations we
find that two of the three successful structures actually suc-
ceed because the closest attracting elements connect first.
Consequently, the edges are gradually brought together in a
series of local attractions. We term this process “zipping.”

The goal of this paper is to understand how the choices of
sheet shape and thickness influence the success of self-
assembly through zipping. Using theory and numerical simu-
lations, we find that the primary mechanism for assembly of
an elastic sheet is buckling due to the induced strain from
bringing edges together. We demonstrate that buckling is also
the essential feature leading to metastability, since each
buckling event can result in two possible final configurations
for every pair of edges that are brought together. Hence the
number of metastable states can increase exponentially with
the number of edge pairs. Our simulations demonstrate that
in practice there is mechanical coupling between nearby edge
pairs, which decreases the number of attainable configura-
tions.

I. NUMERICAL MODEL OF FLAT SHEETS
WITH ATTRACTING ELEMENTS

We have numerically simulated the three sheet shapes
studied in the experiment, with distributions of attracting el-
ements on their edges. We discretize the sheet using an
equilateral-triangular lattice of springs, following the method
of Seung and Nelson �11�. The lattice is obtained by super-
posing a parametrization of the experiment’s two-
dimensional �2D� boundary curve on a uniform hexagonal
lattice �see Fig. 1�, and selecting those faces with centroids
contained within the boundary curve. The set of faces and
their included edges and vertices comprises the discrete rep-
resentation of the sheet.

The stretching energy for the sheet is given by the stretch-
ing of springs between neighboring vertices, and the bending
energy is given by the angle between adjacent triangular*Electronic address: alben@deas.harvard.edu
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FIG. 1. �Color online� Representative cases for the assembly of flat sheets into curved surfaces. �a� Discretization of the shape used by
Boncheva et al. for the “flower” cut. �b� A case where the random initial condition �out-of-plane displacements of O�10−10�� leads to the same
sign of curvature at all cusps of the flower cut after buckling. The ratio of stretching to bending energy is �=105 �see Eq. �2��. The magnitude
of stretching strain is visualized by intensity. Light gray �or green� corresponds to low values of strain and dark gray �or red� to high values.
�c� The assembled flower cut. �d� An initial buckling of the flower cut when five of the six cusps buckle upward �inset, black circles�, and
one buckles downward �inset, gray �green� circle�. Such wrong-signed initial curvature persists in the final state of the sphere. �e� Simulation
of the final equilibrium of the flower shape with alternating positive and negative charges at the tips �with a discretization which is coarser
than that in �a�–�d��; misfolding occurs due to an instability among multiple interacting charges. �f� Discretization of the shape used by
Boncheva et al. for the “orange peel” cut. �g� An intermediate stage in the assembly of the orange peel cut, in which the initial buckling has
the same sign at both cusps. Here �=104. �h� The final assembled orange peel cut, showing a concentration of stretching strain near the
boundary. The stretching strain decays rapidly from a maximum of 20% at the boundary to less than 2% within 90% of the sheet. �i� A
simulation of the orange peel shape, where the charges are sufficiently strong to join the edges before the shape equilibrates elastically from
previous zipping steps. The zipping deviates sufficiently from the case in �g� that incorrect curvature occurs. �j� Discretization of the shape
used by Boncheva et al. for the “equator cut.” �k� A simulation of the equator cut shape during zipping, showing an example of the generic
phenomenon in which neighboring cusps have opposite-signed curvature, thus preventing the successful zipping of the equator cut into a
sphere. Here �=2.5�104.
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faces. The electrostatic energy is a sum over pairwise Cou-
lomb forces at the sheet vertices. The total energy is thus

U =
�3Y

4 �
i,j

�rij − rij
eq�2 + �̃�

�,�
�1 − n� · n�� + �

k,l
kc

qkql

rkl
���rkl� ,

�1�

where Y is the 2D Young’s modulus, rij is the distance be-
tween neighboring vertices with equilibrium distance rij

eq, �̃
is the sheet bending rigidity, and n� and n� are normals to
neighboring faces. The first two terms on the right side of
Eq. �1� tend to the energies of an isotropic elastic sheet with
2D Young’s modulus Y, bending rigidity �̃, and Poisson ratio
	=1/3 in the continuum limit �i.e., when the ratio of the
bond length rij

eq to sheet size R goes to zero� �11�. The bend-
ing rigidity may be expressed in terms of Y, 	, and the sheet
thickness h as �̃=Yh2 /12�1−	2�. In the Coulombic term, qk

and ql are strengths of point charges fixed to the sheet and
separated by a distance rkl, and �� cuts off the 1/r singularity
within a distance of order � �if � is sufficiently small it does
not affect the dynamics—see Appendix A�. Charges are dis-
tributed over the edges of the sheet. We are thus able to
model all of the magnetic configurations in the experiment,
since assembly is driven by the interaction of elements on
the sheet edges.

The main advantage of the triangulated-mesh method for
simulating elastic sheets is its simplicity and computational
speed. Previous workers have used triangulated-mesh models
to simulate elastic sheets in problems of quasistatic crum-
pling, with prescribed forcing at the boundaries �12�.

We simulate assembly using two different dynamical
rules. The first rule assumes overdamped dynamics, in which
the velocity of each vertex on the sheet is proportional to the
force on it �equal to the gradient of the energy in Eq. �1��; the
second rule assumes a quasistatic approximation to over-
damped dynamics. Here the edges of the sheet are joined in
a series of small discrete increments. When each increment is
joined, the rest of the sheet is assumed to relax to elastic
equilibrium. To complete the specification of quasistatic dy-
namics, one must specify the order in which the different
points on the edges are to connect. Note that the r−2 decay of
Coulomb forces causes a strong bias in favor of nearby
charge pairs, whose attraction is only weakly affected by
distant charges. A natural order for assembly of points along
a given pair of edges therefore consists of connecting lattice
points in order of proximity, beginning at the point where the
edges meet. Finally, we specify the order in which pairs of
points on different edges connect according to the charge
distributions being simulated. Different orderings can lead to
different elastic energy minima accessible through quasi-
static dynamics. The advantage of the quasistatic dynamics is
that it is faster to simulate than overdamped dynamics.

A simulation of quasistatic dynamics requires a discrete
energy minimization when each pair of charges is joined. In
our quasistatic simulations, we evolve the sheet through a
large number of elastic equilibria, at each stage performing
an energy minimization in a high-dimensional space. We use
a standard quasi-Newton method known as limited-memory
Broyden-Fletcher-Goldfarb-Shanno �LM-BFGS�, a limited-

memory Broyden method �16�. This method is efficient for
energy minimization and requires moderate computer time to
converge to a minimum-energy state. For our typical mesh
size there are O�103� degrees of freedom, and O�103� evalu-
ations of the energy gradient are needed. Our simulation of
overdamped dynamics uses second-order Runge-Kutta time
stepping. Small time steps are required to simulate the mo-
tion of charges accurately, which makes the dynamics more
computationally expensive than quasistatic dynamics.

II. RESULTS AND DISCUSSION

We have simulated the assembly of the three sheets stud-
ied in the experiment of Boncheva et al., and representative
examples are shown in Fig. 1. The discretized flower-petal
sheet in Fig. 1�a� is simulated quasistatically by joining
points moving outward from each cusp along the six edge
pairs. The six edge pairs are joined simultaneously. When
enough points have been joined, the sheet becomes unstable
to out-of-plane motion. Under a small initial out-of-plane
displacement, the sheet may buckle into the configuration
shown in Fig. 1�b�. Subsequent joining of edges leads finally
to the approximate sphere shown in Fig. 1�c�. Large stretch-
ing strain is concentrated along edges of the sheet throughout
the dynamics. For a different initial out-of-plane perturba-
tion, we obtain the state in Fig. 1�d�. Here five cusps buckle
with the same sign of curvature and one with opposite sign.
This structure does not subsequently fold into a closed shape.
Simulations using overdamped dynamics have given the
same sheet configurations. In Fig. 1�e�, we show the result of
a simulation of the flower-petal sheet using an alternative
configuration of attracting elements introduced by Boncheva
et al. Here we place alternating positive and negative charges
only at each of the six tips of the petals, and not along the
edges. We use overdamped dynamics with a mesh which is
coarser than that in Figs. 1�a�–1�d�. After buckling out of
plane as in Fig. 1�b�, the six tips approach the center of the
sheet radially. However, at a certain distance the tips become
unstable to a pairing-up motion. Finally, as shown in Fig.
1�e�, the sheet reaches an undesired equilibrium with the six
petals joined into three pairs in a nonclosed shape.

Simulations of the orange peel cut, shown in Figs.
1�f�–1�h�, show a sequence of states similar to that for the
successful flower petal when assembly is successful here
also: the sheet becomes unstable to out-of-plane buckling at
the �two� cusps, which leads to the final shape in Fig. 1�h�
when both buckle with the same sign of curvature; if not, the
final state is a nonclosed shape �not shown�. Figure 1�i�
shows another representative route to misfolding, with over-
damped dynamics, and charges distributed along the edges.
After buckling with same-signed curvature at the cusps, sub-
sequent portions of the sheet join before the portion near the
cusps has reached elastic equilibrium. These portions of the
sheet have different-signed �upward� curvature, which per-
sists in the final, nonclosed equilibrium shape �not shown�.

Finally, we simulate the equator cut shown in Fig. 1�j�.
We have never been able to successfully fold this structure.
Using quasistatic dynamics, the initial buckling at the cusps
yields curvature of different signs, which persists in subse-
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quent states �Fig. 1�k��. Different-signed curvature appears
for an ensemble of random initial out-of-plane perturbations,
and for all choices of orders in which different edges are
joined. Also, different-signed curvature arises in all of our
simulations using overdamped dynamics. In each case, a
misfolded, nonclosed shape results.

The determining event for the correct assembly of the
three shapes in Fig. 1 is the initial out-of-plane buckling at
the cusps. At each cusp, buckling may occur with one of two
signs. If the buckling events were independent, then a sheet
with n cusps could buckle into 2n possible configurations,
only two of which can approximate a sphere �to the extent of
having Gaussian curvature of a single sign�. Therefore, suc-
cessful assembly is generally favored by having a smaller
number of cusps. Simulations show that coupling between
cusps is important: using random perturbations to an initially
flat sheet, the flower-petal cut tends to favor cusps buckling
with the same sign of curvature, while the equator-cut sheet
buckles with different-signed curvature. The latter prevents
successful assembly. The rotational symmetry of the flower-
petal sheet plays a role in correct assembly, since total
stretching strain is reduced when all cusps buckle with the
same sign of curvature.

The simulations also illustrate the contrast between as-
sembly through local and global interactions. The strategy of
joining edges is a local strategy which, as we have seen,
leads to assembly through buckling. The strategy of joining
the tips of the sheet, as in Fig. 1�e�, is a global strategy,
because the interaction of all six charges is important. Here
electrostatic equilibria become important in addition to elas-
tic equilibria, greatly increasing the number of equilibria and
the possibility of misfolding. However, if the additional equi-
libria can be avoided, global assembly can succeed where the

local zipping strategy does not. For the equator-cut shape,
Boncheva et al. were able to obtain successful assembly us-
ing a dynamics in which first the equatorial loop closed, and
then the poles. This is a global strategy, because it relies on
first joining two edges with distance of the order of the sheet
size to close the equatorial loop. This type of strategy puts
constraints on the locations and strengths of the attracting
elements, which must be considered as a fully coupled
system.

III. ESTIMATION OF THE BUCKLING THRESHOLD

How do the shape of the cut and the sheet thickness affect
buckling? The essential problem is captured by the buckling
of a disk into a cone. In Fig. 2, a sector of angle 
 /3 has
been removed from a disk, and attracting charges are placed
on the resulting edges. When the sheet edges connect as in
Fig. 2�b�, large stretching energy is induced, with compres-
sion along radial lines and extension along circumferential
lines. If the disk radius is sufficiently small, the disk remains
planar. However, if the disk edges connect over a distance R
which is sufficiently large, the sheet buckles out of plane.
Here the stretching energy in the planar state is relieved by
bending the sheet into a conical shape �with the curvature
singularity cut off at the center�, shown in Fig. 2�c�.

A theoretical analysis of this buckling problem was given
by Mitchell and Head �13� and subsequently by Seung and
Nelson �11�, who showed that the stretching energy in a flat
disk of radius R with a sector of angle s removed grows as
Ys2R2 for large R. The bending energy for the same sector
bent into a developable cone, and cut off at inner radius a,
grows only as s�̃ log �R /a�, albeit with a larger prefactor.
Hence, for fixed s, there is a critical radius above which the
cone has lower energy than the disk. In nondimensional
terms, this crossover radius R corresponds to a critical ratio
of stretching to bending energy, or von Karman number,

� = YR2/�̃ . �2�

For the disk in Fig. 2, the critical � for buckling is
�cr=154 �11�.

The buckling of a cone is a useful model to understand
the buckling of more general shapes, such as the flower cut
in Figs. 1�a�–1�d�. Joining each of the six pairs of edges
creates a local pattern of stretching strain similar to that in
the disk. Here the particular shape of the joined edges deter-
mines the buckling threshold. For two curved edges meeting
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FIG. 2. �Color online� Sequences in the simulation of the assembly of a circular disk minus an angular sector into a cone by buckling.
The parameter �=YR2 / �̃=625 �where R is the total disk radius�. The magnitude of stretching strain is visualized by intensity. Light gray �or
green� corresponds to low values of strain and dark gray �or red� to high values. �a� The equilibrium disk shape with 1/3 of the edges zipped,
with stretching strain insufficient to induce buckling. �b� The flat disk with edges completely zipped, prior to buckling. �c� The equilibrium
conical shape of the zipped disk in �b�.
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FIG. 3. �Color online� Diagram showing how dislocations arise
in the joining of curved edges. �a� When two polygonal edges are
joined near a a point �circled�, a point disclination of strength
��1+�2�−2
 appears. The elastic equilibrium of the mesh is shown
in �b�. When two smooth edges are joined, the disclination density
per unit length equals the sum of the curvatures �1 ,�2 of the joined
points, as explained in the text �c�.
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at a cusp, we show now that the joined edges contain a line
distribution of disclinations, with strength proportional to the
difference between the curvatures of the two edges.

First, consider two edges of a sheet in our discretized
model �Eq. �1�� which are forced together in a neighborhood
of a point which is circled in Fig. 3�a�. The two edges have
interior angles �1=2
 /3 and �2=
 at this point. After the
two edges are forced together, and the sheet is allowed to
relax, for sufficiently small � the sheet remains planar and
the deformed configuration is shown in Fig. 3�b�, with a
stretching strain that is maximum at the circled point. The
disclination strength is ��1+�2�−2
, which equals −
 /3 in
this case.

Now consider a sheet with a smooth boundary curve,
shown in Fig. 3�c�. Such a curve may be approximated by a
polygonal curve that follows the edges of a hexagonal lattice.
Each pair of points on the smooth boundary curve that are
joined may be approximated by a pair of points on the po-
lygonal curve that are joined in the manner shown in Fig.
3�a�. Each pair of joined vertices contributes a disclination of
strength ��1−
�+ ��2−
� over a lattice spacing �. In the
limit that � tends to zero, the disclination strength per unit
edge length equals

f�s� = �1�s� + �2�s� , �3�

the sum of the curvatures at the edges of the smooth curve.
When two curved edges are zipped together starting from

a cusp, the radius at which buckling occurs corresponds to a
critical value of �. The sheet buckles when the edges are
joined over a distance Rb that satisfies

�
0

Rb

f�s�ds = �  c12�1 − 	2��h/Rb�2. �4�

The inequality on the right was given by Seung and Nelson
for a positive point disclination of strength � in a circular

disk of radius Rb, in which case c was estimated as 123 �11�.
By including the new integral term on the left, we predict a
similar inequality when � is set equal to the disclination per
unit length f integrated along the zipped edges. We use the
same value of c as a first approximation, since it varies by
less than for 20% for positive and negative point disclina-
tions of the same magnitude �11�. In using the disk model of
buckling at a cusp, we also assume that Rb is sufficiently
small relative to the minimum distance between cusps so that
each cusp buckles nearly independently.

We can express the term on the left-hand side of Eq. �4�
more simply as

�
0

Rb

f�s�ds = �
0

Rb

�1�s� + �2�s�ds = ���Rb,1
Rb,2, �5�

which is the change in tangent angle between the two points
that are to be joined at a distance Rb from the cusp. In the
experiment of Boncheva et al., h=240 �m, while the edge
lengths range from 20 mm �equator cut� to 80 mm �orange
peel�. Hence for all the edge pairs in the experiment the
right-hand side of Eq. �4� is at most 0.189, while the left-
hand side of Eq. �4� is at least 
 /3, so that buckling is
predicted in all cases. By contrast, if the sheet were too thick,
the edges too short, or the change in tangent angle too
small—so that the inequality �4� were not satisfied—
attraction between edges would be insufficient to induce
buckling. In this regime assembly requires external forces.

IV. STRAIN CONCENTRATION IN BOUNDARY LAYERS
AT EDGES

In addition to determining the occurrence of out-of-plane
buckling of a sheet, dislocation-mediated stretching also de-
termines the elastic energy in the final equilibrated state. The
closed shapes in Fig. 1 show residual strain along the zipped
edges. The energy E of these structures in the final state was
examined in Boncheva et al. and estimated to be the bending
energy of a sphere, E� �̃. We find that this is correct only
when the closed structure is exactly developable—in other
words, it represents a locally area-preserving deformation of
the flat sheet. However, this is a very special limit for zipped
surfaces.
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approximate sphere ���1� concurrently with the appearance of a
boundary layer for ��1. The predicted power-law scaling of E / �̃
at large � is shown for comparison up to �=104, when discretiza-
tion effects become important. The stretching energy transitions
from a linear growth �E� �̃�� to an intermediate scaling when sub-
dominant to the bending energy for 10���104. The asymptotic
calculation predicts that both energies scale as �̃�1/4 for �104.
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Generic regions do not form developable surfaces when
zipped. In general, the shape of the sheet boundary plays an
important role in the concentration of stress. The local shape
of the two edges being zipped together acts as a source of
stretching, leading to a localization of strain near the bound-
ary. In Figs. 1�c� and 1�g� we show the flower-cut and orange
peel shapes for �=104 and 105, respectively, where the shad-
ing shows a stress concentration near the edges. Such con-
centrations have been examined for crumpled sheets where
stress concentrates at points �14� and ridges �15�. There are
typically large stretching and bending strains, which diverge
within localized regions as the sheet thickness tends to zero.
When stress is assumed to concentrate at an edge, an
asymptotic calculation �Appendix B� predicts that elastic
energies scale as E� �̃�1/4. Figure 4 gives the stretching
and bending energies versus the von Karman number
���R /h�2 for the full numerical model of the orange peel
cut discretized with 2200 faces. For �104 the boundary
layer thickness—the region of large stresses—is of the
order of the bond length, so we are constrained to verify
quantitatively the boundary-layer scaling over the range
102���104 where ��1. At �=104, stretching and bend-
ing energy become equal, and we would expect both to in-
crease as �1/4 for larger �.

CONCLUSIONS

To conclude, our simulations have examined the relation-
ship between sheet shape and self-assembly, and we have
estimated how the number of metastable states depends on
the shape of the sheet. Local minima increase exponentially
with the number of edge pairs that exceed a sheet-thickness-
dependent threshold of curvature variation. The analysis
demonstrates that in general there is a limit to the complexity
of an elastic sheet which can self-assemble without misfold-
ing.
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APPENDIX A: ENERGY CUTOFF

A common method for simulating the dynamics of
charged objects �such as molecules� is to introduce a cutoff �
so that the Coulombic potential is of the form 1/ �r+��. In
this case the gradient is large and discontinuous at r=0. We
eliminate this discontinuity by removing the order-r term in
the Taylor series expansion of the energy about r=0. Our
energy is shown in Fig. 5 for several values of �, in terms of
the cutoff function

���rij� =
rij

rij + �
+

rij
2

�2 e−rij/�, �A1�

where � is set to less than 10% of the equilibrium lattice
spacing. For � sufficiently small, the particular value of � has
a very small effect on assembly dynamics. For r on the order

of the length between the nearest charges at each zipping
step, the potential converges to the long-range 1/r electro-
static potential.

APPENDIX B: EDGE ENERGY CALCULATION

Here we give the calculation of the scaling of elastic en-
ergy with respect to material parameters for a shape formed
by joining edges. Near a point r on the sheet edge, we may
express the shape of the sheet in terms of the Foppl–von-
Karman equations �17�:

Yh3

12�1 − 	2�
�4w = h��,w� , �B1�

�4� = −
Y

2
�w,w� + F�r� , �B2�

where

�a,b� =
�2a

�x2

�2b

�y2 +
�2a

�y2

�2b

�x2 − 2
�2a

�x � y

�2b

�x � y
. �B3�

Here w is the deflection out of the local tangent plane to the
sheet edge �with rectilinear coordinates x and y�, and � is the
Airy stress function �17�. These equations arise when taking
the variation of the continuum elastic energies with respect
to displacements, and using �̃=Yh3 / �12�1−	2��. Here Y is
the 3D Young’s modulus, and 	 is the Poisson ratio. We have
included in Eqs. �B1� and �B2� a term F�r� which represents
a point source of in-plane stretching �such as a point discli-
nation�. For a point disclination, F�r� is the product of dis-
clination strength with a 2D �-function. For a pair of curved
zipped edges, corresponding to a continuous line of disclina-
tion density, F�r� becomes the product of disclination density
with a 1D � function distribution across the boundary line. In
Eq. �3� we gave the strength of the line distribution of dis-
clinations as ��1�s�+�2�s��. If we define a local coordinate
frame with normal distance n and tangential distance s along
the line, our source term becomes

F�r� = ��s���1�s� + �2�s����n� . �B4�

We have included a “rotation factor” ��s� in this expression.
If the boundary conditions require that the edges are clamped
together—as is the case if the edges are joined by magnetic
dipoles which apply a torque, as in the experiment of
Boncheva et al.—then the two edges meet in the same tan-
gent plane, and ��s�=1, representing purely in-plane stretch-
ing. If the edges are brought together by point charges, they
are pinned together, in which case their relative position is
fixed but they are free to rotate with respect to one another.
In this case, some of the local stretching may be relieved by
edge rotation, and generally 0���s��1. The form of � de-
pends on the global 3D geometry of the sheet.

Returning to Eqs. �B1� and �B2�, we insert Eq. �B4�, and
also change from rectilinear x ,y coordinates to s ,n coordi-
nates. We now apply our assumption of a boundary-layer
solution, so that all quantities vary more rapidly with n than
with s. Thus we retain only the terms in Eqs. �B1� and �B2�
with the largest number of n derivatives:
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Yh3

12�1 − 	2�
wnnnn 	

h

�
�wnn�n + wn�nn� , �B5�

�nnnn +
Y

�
wnnwn 	 ��s���1 − �2���n� . �B6�

Here � is the radius of curvature of the �joined� boundary
curve at point r.

Following the argument by Lobkovsky and Witten �12�,
we nondimensionalize Eqs. �B6� by defining

�̄ = �/�̃, w̄ = w/�, s̄ = s/�, n̄ = n/�, �̄ = �� ,

�B7�

where we nondimensionalize lengths by the local radius of
curvature of the boundary. For the quasidevelopable spheres
considered here, � is of the order of the size of the assembled
object. Upon inserting these expressions and dropping the
overbars, the von Karman equations become

wnnnn 	 �wnn�n + wn�nn� , �B8�

�2�nnnn + wnnwn 	 ��s���1 − �2���n� , �B9�

where �=h / �12��1−	2� is a nondimensional sheet thick-
ness. We now assume that all the boundary-layer variables
scale with different powers of sheet thickness:

w̃ = ��w, �̃ = ���, s̃ = s, ñ = ��n, �̃ = �−�� .

�B10�

Here �−� is the assumed width of the boundary layer; no
rescaling is needed in the tangential s direction. We have also
assumed that w̃ scales with ñ. This is because, as �→0, the
slope dw̃ /dñ of the deformed plate undergoes an order-1
change across the boundary layer, the value of which de-
pends on the global geometry of the closed surface. Finally,
we have rescaled the � function so that

� �̃�ñ�dñ =� ��n�dn = 1. �B11�

We now determine the powers � and � by balancing terms.
We insert the rescaled variables into Eqs. �B9� to obtain

�3�wnnnn 	 �2�−��wnn�n + wn�nn� , �B12�

�2+4�−��nnnn + ��wnnwn 	 ����s���1 + �2���n� .

�B13�

A balance of terms in the two equations is possible only if
�=−�=−1/2. Thus the boundary-layer thickness scales with
the square root of the sheet thickness. This is the same scal-
ing of the curved boundary layer that occurs in the mirror
buckling of a sphere �or any convex surface� indented at a
point �17,18�. The strength of the source term does not
change the scaling of the curved boundary layer in a shell,
but only the prefactor.

We can now determine how the elastic energy scales with
sheet thickness. The stretching energy is given by

Es =
1

2Yh
� dx dy�tr��i� j���2 − 2�1 + 	�det��i� j�� .

�B14�

In the boundary layer the energy has the dominant term

Es �
1

2Yh
� dn ds�1/2�2
 �̃�−1/2

�2�1/2�2
 �2�

�n2 �2

. �B15�

Note that all quantities are rescaled by the corresponding
powers of �, although the tildes have been dropped for sim-
plicity. Thus

Es

�̃
� C

�−1/2

2
, �B16�

where the constant C represents the evaluation of the inte-
gral. As for the mirror buckling of a sphere, we find that the
stretching energy, nondimensionalized by the bending rigid-
ity, scales as the sheet thickness to the −1/2 power. By simi-
lar steps, the same scaling holds for the bending energy
�by necessity, since the two terms balance�:

Eb

�̃
=� dx dy�tr��i� jw��2 − 2�1 − 	�det��i� jw� � C�

�−1/2

2
.

�B17�

Since � is a nondimensional sheet thickness, ���−1/2, so
Es / �̃�Eb / �̃��1/4.
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