Population Models. Stability

Logistic Equation

\[
\frac{dP}{dt} = k(M-P)P, \quad t>0, \quad M>0
\]

\[
\frac{dP}{(M-P)P} = kdt
\]

\[
\frac{1}{(M-P)P} = \frac{1}{M} \left(\frac{1}{M-P} + \frac{1}{P} \right): \text{partial fraction decomposition}
\]

(see previous lecture)

\[
\int \frac{dP}{(M-P)P} = \int kdt
\]

\[
\frac{1}{M} \int \left(\frac{1}{M-P} + \frac{1}{P} \right) dP = \int k dt
\]

\[
\frac{1}{M} \left(- \ln |M-P| + \ln |P| \right) = kt + \bar{C}
\]

\[
\frac{1}{M} \ln \left| \frac{P}{M-P} \right| = kt + \bar{C}
\]

\[
\ln (a \cdot b) = \ln a + \ln b
\]

\[
\ln \frac{a}{b} = \ln a - \ln b
\]
\[\frac{P}{M-P} = e^{-uM} + c \quad \exp \]

\[\frac{P}{M-P} = e^{-uM+c} \]

\[\frac{P}{M-P} = C e^{-uM} \quad (M-P) \quad (1) \]

\[P = C(M-P)e^{-uM} \]

\[P = C Me^{-uM} - C Pe^{-uM} \Rightarrow P + C Pe^{-uM} = CM e^{-uM} \]

\[P(1 + Ce^{-uM}) = CM e^{-uM} \]

Solve for \(P \)

\[\Rightarrow P(t) = \frac{CM e^{-uM}}{1 + Ce^{-uM}} = \frac{M}{1 + \frac{1}{C} e^{-uM}} \quad \lambda, M > 0 \]

\[\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{M}{1 + \frac{1}{C} e^{-uM}} = M: \]

\[\frac{CM e^{-uM}}{1 + Ce^{-uM}} = \frac{M}{\frac{1}{C} e^{-uM} + 1} \]

\[P = M \text{ is stable equil. solution} \]
To find C, we use (1):

$$\frac{P}{M-P} = Ce^{-\lambda t}$$

$P(0) = P_0 \Rightarrow \frac{P_0}{M-P_0} = C$

$$P(t) = \frac{M}{1 + \frac{M-P_0}{P_0}e^{-\lambda t}} = \frac{MP_0}{P_0 + (M-P_0)e^{-\lambda t}} = P(t)$$

Note

$P_0 = 0 \Rightarrow P(t) = 0$ for all t \quad \{ p=0 \text{ and } p=M \text{ are two equil. solutions} \}

$P_0 = M \Rightarrow P(t) = M$ for all t \quad \{ p=0 \text{ and } p=M \text{ are two equil. solutions} \}

Let $0 < P_0 < M$ or $P_0 > M \Rightarrow \lim_{t \to \infty} P(t) = M$

$\Rightarrow P(t) = 0$ is unstable equil. solution

$P(t) = M$ is stable
This confirms what we already knew from stability analysis.

![Solution curves](image)

Q: What happens when \(P_0 < 0 \)?

\[
P(t) = \frac{MP_0}{P_0 + (M-P_0)e^{-\lambda Mt}}
\]

at some finite time \(t^* \), \(P_0 + (M-P_0)e^{-\lambda M t^*} = 0 \)

\[
\Rightarrow \lim_{t \to t^*} P(t) = -\infty
\]
Doomsday / Extinction Model

\[\frac{dP}{dt} = kP(P-M), \quad k, M > 0 \]

There are two equil. solutions: \(P = 0, \ P = M \)

\(P^* \)

\[\text{Solution: } P(t) = \frac{MP_0}{P_0 + (M-P_0)e^{-kMt}} \]

if \(0 < P_0 < M \), \(\lim_{t \to \infty} P(t) = 0 : \text{extinction} \)

if \(P_0 > M \) \(\Rightarrow \) there is some finite \(+ \) at which

denominator \(\frac{P_0 + (M-P_0)e^{-kMt}}{P_0 + (M-P_0)e^{-kMt}} = 0 \) and \(\lim_{t \to +} P(t) = + \infty : \text{doomsday} \)
Logistic Equation with Harvesting

\[x = x(t) \]

\[\frac{dx}{dt} = ax - bx^2 - h \]

logistic equation w/ harvesting

where \(a, b, h > 0 \)

\[\frac{dx}{dt} = bx(M-x) - h \]

RHS does not depend on \(t \) explicitly

\(\Rightarrow \) this is an autonomous DE

Def: A differential equation \(\frac{dx}{dt} = f(x) \) is called autonomous.

\(\Rightarrow \) does not depend on \(t \) explicitly
Consider

\[\frac{dx}{dt} = k x (M-x) - h \]

\[\frac{dx}{dt} = -k(x-H)(x-N) \]

if \((kM)^2 - 4kh > 0 \)

or \(M^2 - \frac{4hl}{k} > 0 \)

\[H, N = \frac{1}{2} \left(M \pm \sqrt{M^2 - 4 \frac{hl}{k}} \right) \]

\[a x^2 + b x + c = a(x-x_1)(x-x_2) \]

\[x_1, x_2 : \text{roots} \]

\[x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[-k x^2 + kMx - h = 0 \]

\[x = \frac{-kM \pm \sqrt{(kM)^2 - 4kh}}{-2k} \]

de note these roots by \(H \) and \(N \)

\(w/ \) "+" sign

\(w/ \) "-" sign

\[H, N: 2 \text{ equil. sols} \]

\(x = H \) is unstable equil. sol

\(x = N \) is stable
\[x = N: \text{ new limiting population size} \]
\[\text{(due to harvesting)} \]

Solution (by separation of variables and partial fraction decomposition):
\[
x(t) = \frac{N(x_0 - H) - H(x_0 - N) e^{-k(N-H)t}}{(x_0 - H) - (x_0 - N) e^{-k(N-H)t}}
\]

where \(x(0) = x_0 \).

If \(x_0 < H \), then there is a finite time \(t_1 \):
\[
\lim_{t \to t_1} x(t) = -\infty \quad \text{but before } t_1, \ x(t) \text{ becomes zero: extinction}
\]
$x(t) = H$: threshold equilibrium solution that separates two different solution behaviour:

- If $x_0 > H \Rightarrow \lim_{t \to \infty} x(t) = N$
- If $x_0 < H \Rightarrow$ population becomes extinct in a finite time (due to harvesting)
Logistic Equation w/ Harvesting (Cont'd)

Ex: \[\frac{dx}{dt} = x(4-x) - h \]: logistic equation w/ harvesting rate \(h \)

\(x(t) \): population size (hundreds) measured in \(t \): measured in years

If \(h = 0 \), we have logistic equation: \[\frac{dx}{dt} = x(4-x) \]

Then \(\lim_{t \to \infty} x(t) = 4 = M \) (hundred)

Now let \(h = 3 \).

\[\frac{dx}{dt} = x(4-x) - 3 \]

\[x(4-x) - 3 = 4x - x^2 - 3 = -(x^2 - 4x + 3) = -(x-1)(x-3) \]

\(x_1 = 1 \), \(x_2 = 3 \)

\(x_1 \cdot x_2 = 3 \), \(x_1 + x_2 = 4 \)
Two critical points: \(x = 1 \) and \(x = 3 \)

\[
\frac{dx}{dt} = -(x-1)(x-3)
\]

\(x^1 \uparrow \)

1 \rightarrow 3 \rightarrow x

\(x = 1 \) : unstable equilibrium solution
\(x = 3 \) : stable equilibrium solution

[Phase Diagram]

\[ax^2 + bx + c = 0 \]
\[x_1, x_2: \text{ roots} \]
\[x_1 \cdot x_2 = \frac{c}{a} \]
\[x_1 + x_2 = -\frac{b}{a} \]

Vietta's Theorem

If lake is stocked initially with 100 fish, then \(x(t) \rightarrow 300 \) fish as \(t \rightarrow \infty \).

If lake is stocked initially with fewer than 100 fish, then lake will be "fished out" due to excessive harvesting within finite time.
Consider again \(\frac{dx}{dt} = x(4-x) - h \)

\[x(4-x) - h = 0 \]

\[-(x^2 - 4x + h) = 0 \]

Recall, critical points of \(\frac{dx}{dt} = f(x) \) are solutions \(x(t) = c \) for which \(f(c) = 0 \)

\[x_{1,2} = \frac{4 \pm \sqrt{16 - 4h}}{2} = 2 \pm \sqrt{4 - h} \]

if \(h < 4 \Rightarrow \) discriminant \(4 - h > 0 \Rightarrow \) there are two real distinct roots

if \(h = 4 \Rightarrow \) discriminant \(4 - h = 0 \Rightarrow \) one real repeated root \(x_{1,2} = 2 \)

if \(h > 4 \Rightarrow 4 - h < 0 \Rightarrow \) there are no real roots \(h > 4 \)

\(x' \)

\(h < 4 \)

\(h = 4 \)

phase diagram

\[\hline \]

\[\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3}
\end{array} \]
\[
\frac{dx}{dt} = x(y-x) - h
\]

Crit. pts: \(x(y-x) - h = 0\)

\[-x^2 + xy - h = 0\]

\[x^2 - xy + h = 0\]

\[x_{1,2} = \frac{y \pm \sqrt{y^2 - 4h}}{2}\]

\[ax^2 + bx + c = 0\]

\[x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]

\[= \frac{y \pm \sqrt{4h-y}}{2} = 2 \pm \sqrt{4h-y} \quad (This \ is \ for \ y-h > 0 \ or \ h < y)\]

If \(h = y \Rightarrow x_{1,2} = 2 \pm 0 = 2\)

If \(h < y \Rightarrow \) roots are complex \(\Rightarrow\) no real roots

We don't consider the case when \(h = 0\) on pg. 3.

We consider all possible cases as \(h\) varies.

If \(h = 0\), then

\[x_{1,2} = 2 \pm \sqrt{y} = 2 \pm 2 = 0 \pm y\]

and they depend on \(h\).

We have 3 cases: \(h < y\) (two distinct real roots), \(h = y\) (one root), \(h > y\) (no real roots)
\(h < y \): two distinct equil. sol.\(^{1,5}\)

\(h = y \): one equil. sol.\(^{1,5}\)

\(h > y \): no equil. sol.\(^{1,5}\)

\(x_1 \) is unstable equil. sol.\(^{1,5}\)

\(x_2 \) is stable \(-1\)

2 equil. sol.\(^{1,5}\)

\(x = 2 \) is unstable equil. sol.\(^{1,5}\)

(semi-stable)

1 equil. sol.\(^{1,5}\)

no equil. solution

Summary

\(h < y \): two distinct equil. sol.\(^{1,5}\)

\(h = y \): one equil. sol.\(^{1,5}\)

\(h > y \): no equil. sol.\(^{1,5}\)
Def: The value \((h=r)\) for which qualitative behaviour of solutions of DE with parameter \(k\) changes as \(k\) increases is called a bifurcation point.

One of the ways to visualize this change in solution behaviour is to plot bifurcation diagram.

\[
\frac{dx}{dt} = x(y-x)-h
\]

\(f(x)\)

\(x(c)=c: \text{critical point} \Rightarrow f(c)=0\)

\(c(y-c)-h=0\)

\[
(c-2)^2 = 4-h
\]

\(h=0 \Rightarrow (c-2)^2 = 4\)

\(c = 2 \pm 2 = 4, 0\)