Definition: A function $f : (X_1, T_1) \to (X_2, T_2)$ between topological spaces is continuous if whenever $U \in T_2$, then $f^{-1}(U) \in T_1$. More informally, we say that a function between topological spaces is continuous if pre-images of open sets are open.

New in-class exercises:

1. If (X_1, T_1) and (X_2, T_2) are topological spaces and $f : (X_1, T_1) \to (X_2, T_2)$ is a constant map, then f is continuous.

2. If X is a set and T_{disc} is the discrete topology on X, then any function $f : (X, T_{\text{disc}}) \to (Y, T_Y)$ to any topological space is continuous.

3. If Y is a set and T_{indisc} is the indiscrete topology on Y, then any function $f : (X, T_X) \to (Y, T_{\text{indisc}})$ with domain any topological space is continuous.

4. **Definition:** If T is a topology on a set X, then B is a basis for T if $B \subset T$ and every element of T is a union of elements of B. (By convention, we regard the empty set \emptyset as the union of an empty collection of elements of B.)

Suppose that $f : X \to Y$ is a function between topological spaces (X, T_X) and (Y, T_Y) and that B_Y is a basis for T_Y.

Prove that f is continuous if and only if whenever B is an element of B_Y, then $f^{-1}(B)$ is open in X (i.e. $f^{-1}(B) \in T_X$.)

5. Let X be a set and let B be a collection of sets such that

$$\bigcup_{B \in B} B = X$$

and if B_1 and B_2 are elements of B and $x \in B_1 \cap B_2$, then there exists $B_3 \in B$ such that

$$x \in B_3 \subset B_1 \cap B_2.$$

Let T be the collection of all subsets of X which are unions of collections of elements of B (where again the empty set is the union of the empty collection of elements of B.)

Prove that T is a topology on X and that B is a basis for T.

6. Exhibit all possible topologies on the set $X = \{0, 1, 2\}$. (You need not prove that each one is a topology.)
Reminder: The Exam will be held in-class on Tuesday October 23. There will be a review session Monday October 21 from 6pm to 8pm in 4088 East Hall.

Individual homework: Due Thursday October 18

1. We define a set to be **closed** in the topological space (X, \mathcal{T}) if $X \setminus C \in \mathcal{T}$.

 Prove that a function $f : (X_1, \mathcal{T}_1) \rightarrow (X_2, \mathcal{T}_2)$ between topological spaces is continuous if whenever C is closed in X_2, then $f^{-1}(C)$ is closed in X_1.

2. Suppose that $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are continuous maps between topological spaces (X, \mathcal{T}_X), (Y, \mathcal{T}_Y), and (Z, \mathcal{T}_Z).

 Prove that $g \circ f : X \rightarrow Z$ is continuous.

3. We say that a topological space (X, \mathcal{T}) is **Hausdorff** if given any two distinct points x and y in X, there exists disjoint open sets U and V so that $x \in U$ and $y \in V$.

 Prove that if X is an infinite set and \mathcal{T} is the finite complement topology, then (X, \mathcal{T}) is not Hausdorff. Explain why this implies that (X, \mathcal{T}) is not metrizable.