In-class Exercises:

1. A sequentially compact subset C of a metric space is bounded (i.e. there exists $x_0 \in X$ and $R > 0$ such that $C \subset D(x_0, R)$). In particular, a sequentially compact metric space is bounded.

2. Show that a subset of \mathbb{R} is sequentially compact if and only if it is closed and bounded.

3. Exhibit a closed and bounded subset of a metric space which is not sequentially compact.

4. Show that if C is a sequentially compact subset of \mathbb{R}, then $\sup C$ exists and lies in C.

5. If $f : X \rightarrow \mathbb{R}$ is continuous and $C \subset X$ is sequentially compact, then there exists $c \in C$ such that $f(c) = \sup f(C)$, i.e. f achieves its supremum on C.

 Notice that Exercise 5 generalizes:

 Theorem: If $[a, b]$ is a closed bounded interval in \mathbb{R} and $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function, then f achieves its supremum.

6. Prove that any finite subset of a metric space is sequentially compact.
Team homework: Due Tuesday October 4

1. Show that every bounded sequence in \(\mathbb{R}^2 \) has a convergent subsequence.

2. Show that a subset \(C \) of \(\mathbb{R}^2 \) is sequentially compact if and only if \(C \) is closed and bounded.

3. Show that if \(X \) is a sequentially compact metric space, then every Cauchy sequence in \(X \) is convergent. (We say that sequentially compact metric spaces are complete.)

4. Prove that \(C([a, b], \mathbb{R}) \) is not sequentially compact with the metric

\[
d_{\infty}(f, g) = \sup\{|f(x) - g(x)| \mid x \in [a, b]\}.
\]